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Abstract 

 Polyvinylidene difluoride (PVDF) is a functional polymeric material that can be used for 

a wide variety of applications. There are many new future applications that were recently 

suggested for electrospun PVDF fibers. Electrospinning is a process capable of producing nano 

to micro sized PVDF fibers in a web.  It is important to control the structure of the web during 

electrospinning because by controlling the structure of the web it is possible for the PVDF fiber 

web to have increased performance in comparison to other common forms of PVDF. 

 While past scientific literature focused on applications of PVDF fibers, little was known 

on how to control structure of PVDF fiber webs during production. Even though defects can alter 

the structure and performance of the web only a few studies reported defect occurrence and how 

to reduce the occurrence of defects in fiber webs. This research investigated the defect free 

production space of electrospun PVDF and provided streamlined guidelines for manufacturers to 

use for electrospinning PVDF webs.  

Many studies looked at influencing fiber diameter and beading with one factor at a time 

experimentation; this work was foundational and was able to identify many important 

electrospinning parameters. But this methodology neglected the possibility of parameter 

interactions and often did not look at the effects of parameters on the occurrence of defects and 

the structure of those defects.  Therefore a systematic understanding that included all of the 

important electrospinning parameters in relation to fiber and defect structure was needed to 

present a clear picture of the possibilities for controlling the structure of electrospun PVDF webs. 

This research explored ways to control the structure of PVDF fiber webs. The production space 
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and control of web structure was explored by using a regression analysis to identify important 

parameters and interactions. Then the regression analysis was used to determine the effects of the 

important parameters that influenced the web structure.  

This research showed that the web structure can be controlled using solution parameters 

and processing parameters and monitored by system parameters. In addition, this study showed 

that by controlling the web structure it was possible to influence the porosity and piezoelectric 

properties of PVDF fiber webs. In its entirety, this research presents a systematic approach to 

producing PVDF fibers for tailored web performance. 
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Chapter 1: Introduction 

1.1 Scope of This Research 

The motivation for this research was based on the increasing societal demand for high 

performance materials, specifically polyvinylidene difluoride (PVDF) fiber webs. 

Electrospinning was identified as a high rate production technique capable of producing nano to 

microscale functional polymeric fiber webs. The objective of this research was to tailor the web 

functionality by controlling the structure of electrospun PVDF fiber webs. The challenges for 

controlling electrospun fiber webs were the following: a limited knowledge on the effect of 

parameters on production defects; the unknown and currently debated influence of many 

parameters on fiber diameter and bead structure, there was limited understanding of the complex 

relationships between electrospinning parameters and the resulting web structure, it was not clear 

how defects and defect structure influence web performance, therefore methods for controlling 

the web functionality were limited by a lack of control and inadequate knowledge on how the 

structure of PVDF webs influences the overall web performance. 

A systems approach, based on regression models relating web structure to electrospinning 

parameters, was hypothesized to advance the scientific communities‟ understanding to ultimately 

achieve a desired fiber web performance. 

1.2 Materials and Society 

There is a great deal of synergy between society and materials science. Throughout 

human history the growth of society and societal complexity was linked with the development of 

new materials and increased levels of processing complexity. Perhaps this was most evident in 
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the way historians have partitioned historical time periods based on the defining use of materials 

such as the Stone Age, Bronze Age, Iron Age, and Steel age. Therefore, the storyline of 

humanity may be likened to a polymer where individual lives are strung together, twisted around 

each other, and often bonded together to create a complex interconnected web of human history. 

Materials influence everyday lives - whether it is the preference of cotton or polyester 

clothing, affinity for the latest and fastest smart phone, or the car that is driven to work. Yet, 

these developments would not be a reality without material science, which made possible durable 

synthetic clothing, fast and portable computer processors, or safe and reliable cars. Many of the 

largest technological changes in the last century were due to an increased understanding of how 

to process materials. If the old axiom is correct that history repeats itself, the future economic 

sustainability and technological advancement of society will again be tied together with the 

ability to use and process materials. Therefore, it is critically important that society continue to 

develop new materials and processing techniques.  

1.3 Contemporary Materials Science and Engineering 

Currently, materials science is focused on the development of new materials and the 

improvement of existing materials by understanding structure-processing-function relationships. 

Materials engineering utilizes fundamental knowledge in materials science to design and make 

functional structures and devices. In order to organize and categorize materials, scientists have 

developed a classification system that breaks down a material into one the following categories: 

metals, semiconductors, ceramics and glasses, polymers, or composites.  

1.4 Polymers and Functional Materials 

A polymer, also known as a plastic, is a long chain molecule composed of many 

repeating subunits. There are primarily two ways to make polymer, both result in a process 



www.manaraa.com

3 

 

called polymerization. The first method occurs when long chains of molecules become entangled 

but not chemically connected to form a larger entangled structure. A polymer that is made using 

this method is called a thermoplastic. The second method occurs during a chemical reaction 

process where molecules combine to form cross linked chains. A polymer that is made using this 

method is called a thermoset.  

Certain polymers behave in a way that classifies them in a subcategory of material called 

a functional material. Functional materials, also called smart materials, refer to a material or 

composite that can sense environmental, mechanical, and/or chemical changes.  The push for 

increased functionality of materials drives the need for increased levels of control on the 

structure of materials. There is a need for smart materials that are lightweight, multifunctional, 

self-powered, chemically stable, and affordable for flexible electronic applications. Piezoelectric 

PVDF is one option for meeting the aforementioned criteria. It‟s ability to stretch, act as a 

pressure/force sensor, and harvest vibration energy makes PVDF a great candidate for flexible 

sensors in electronic devices. In the past investigation of smart materials focused on thin films of 

PVDF, but now the majority of research is focused on controlling new structures at the 

nanoscale. 

1.5 Nanotechnology 

The use of nanotechnology can be traced back well before the knowledge of nanoscale 

phenomena. Hundreds of years ago, gold nanoparticles were used to give a red color in stained 

glass windows [1], and nanotubes were found in 17
th

 century blades made in Damascus [2]. 

These examples illustrate that nanotechnology is not new technology. Only recently have 

scientists had the tools to study nanomaterials, and this has resulted in a surge of nanotechonogy 

related research.   
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The growth in interest of modern nanotechnology is often attributed to Richard Feynman 

in his 1959 lecture, “There‟s Plenty of Room at the Bottom”. In addition to Feynman‟s visionary 

talk, advances in characterization technology were instrumental in accelerating the study of 

nanotechnology. In the 1980‟s, IBM created the first Atomic Force Microscope (AFM) capable 

of atomic resolution. This invention would eventually lead to the first bottom-up approach of 

nanoscale fabrication. Modern nanotechnology is understood to be a cross disciplinary science 

that focuses on materials with at least one dimension in the range of 1 nm to 100 nm. Common 

nanostructures include rods, tubes, belts, wires, fibers, pillars, films, sheets, channels, spheres, 

pillars, pyramids, and chevrons. Many nanostructured materials were reported to have new or 

improved functionality over their bulk counterparts.  

1.6 Nanomanufacturing 

The rise in nanostructured products has lead to a field of study called nanomanufacturing.  

Manufacturing is a broadly used term referring to the making of a product. Manufacturing 

involves transforming raw materials into designed products. While manufacturing does not have 

to be high-tech, current industrial scale manufacturing is always steeped with engineering in 

order to produce a product at a certain price with a certain performance to meet a specific 

societal or individual demand. Nanomanufacturing is a term used when manufacturing products 

and materials with features under 100 nm, and sometimes under 1 µm. Manufacturing of 

nanofibers is a growing interest for researchers and engineers. Recent analyses suggest future 

economic growth in nanofiber production due to an increased demand for the applications that 

nanofibers can meet [3, 4].  

Manufacturing is typically considered a wealth producing sector of the economy. Many 

developed nations that moved towards service based economies are now finding that economic 
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conditions would benefit from an increase in manufacturing, but manufacturing is often viewed 

as having a high environmental cost and health risks [5]. This tension is a reality, but using 

improved engineering to optimize manufacturing processes the engineers can maximize the 

benefits of producing materials and products while reducing negative impacts to the environment 

and human health. Therefore, it is important to have high production efficiencies for industrial 

scale processes.  

The major challenges of nanomanufacturing are to produce nanomaterials at high 

efficiencies and high production rates. One nanoscale material that is poised for future economic 

growth is Polyvinylidene Difluoride (PVDF). New processing techniques have overcome many 

of these manufacturing challenges and allow nanoscale fiber webs to be produced at high 

production rates. However, there are many aspects of electrospun fiber web production that 

remains unknown and uncontrolled.  
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Chapter 2: Background 

2.1 Polyvinylidene Difluoride 

2.1.1 Discovery and Properties of Polyvinylidene Difluoride 

Polyvinylidene Difluoride is a piezoelectric thermoplastic. It was not until the 1970‟s that 

the ferroelectric properties of PVDF were discovered. The material is widely used due to its 

inherent chemical inertness and high mechanical strength - particularly in orientated fibers and 

films. Bulk PVDF is known for exceptional resistance to fatigue and abrasion resistance, and is 

virtually unaffected by solar radiation [6]. These properties are due, in part, to the chemical 

structure of the molecule [6]. Because PVDF is a thermoplastic, it is possible to process the 

material using casting, drawing, blowing, rolling, molding, and spinning.   

2.1.2 Polymorphic Transitions 

The crystalline phase of PVDF is influenced by the processing used. PVDF is a semi-

crystalline polymer. From a molecular level PVDF‟s basic units are carbon, hydrogen, and 

fluorine. C2H2F2 is the molecular unit for PVDF and is shown in Figure 1.  

 
 

Figure 1. The molecular unit of PVDF. 
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This molecular unit has a dipole moment. The dipole moment is the result of a non uniform 

distribution of charge. The fluorine side of the molecule is more electronegative because the 

electron density is higher than the hydrogen end. The all-trans conformation has a bulk dipole 

moment when the crystal structure is aligned. The all-trans conformation is referred to as the β 

phase [7]. The effects of traditional processing on the cyrstalline structure of PVDF are well 

documented [6]. Often, manufacturing processes are used to create aligned beta phase PVDF 

which has piezoelectric properties. In its common phase, PVDF is typically 50% crystalline [6]. 

The long range order of the crystalline structure of PVDF can be characterized using X-ray 

diffraction (XRD) patterns. 

2.1.3 Piezoelectricity 

The word piezo means to squeeze or press in Greek. The word is meant to convey that 

when pressure is applied to a piezoelectric material there is an electric response. This process is 

reversible and when electric voltage is applied to a piezoelectric material that material 

experiences a corresponding strain. Traditional piezoelectric PVDF thin films must be processed 

by stretching to the beta phase and then poled to attain maximum piezoelectric properties [8, 9]. 

The ferroelectric properties result in an electric response that can be used for sensing strain, 

sensing temperature change, and charging electronics [10-13]. The electrical properties and 

piezoelectric properties of PVDF film and other piezoelectric materials are listed in Table 1.  

Table 1. Properties of common piezoelectric materials [14]. 

Property PVDF Film PZT BaTiO3 

Density (10
3
kg/m

3
) 1.78 7.5 5.7 

Relative Permittivity (ε/ε0) 12 1200 1700 

D31 (C/N) 23 110 78 

G31 (V·m/N) 216 10 5 

K31 (% at 1KHz) 12 30 21 
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It is observed from Table 1 that there are other materials with higher piezoelectric coefficients 

than PVDF. But these other materials are not polymers and are limited in their flexibility, 

chemical resistance, and how they can be processed. PVDF and its copolymers have the highest 

known piezoelectric response of any piezoelectric polymer.   

2.2.4 Applications of Electrospun PVDF Fibers  

Recently, new applications are suggested for PVDF due to new advances in nanoscale 

production by using electrospinning. Because of the size and structure of electrospun PVDF 

fibers, they were suggested for applications including antibacterial membranes [15], protein 

absorbers [16], bone growth stimulators [17], tissue scaffolds [18],  actuators [19], glucose 

sensors [20], energy generators [21], force sensors [22-24], hydrophobic coatings [25], and ultra-

filtration membranes [26, 27]. Different desired fiber web structures were required for different 

applications in order to control the desired function such as the mechanical properties, 

piezoelectric effect, hydrophobicity, and pore size [28]. The challenge to optimizing fiber web 

performance was a limited understanding of how to control the web structure. Many of these 

studies provide a starting point to know what structures need to be controlled for each specific 

application.  

2.2.4.1 Mechanical and Electric Properties 

Nanofibers showed increased mechanical properties: higher flexibility, larger critical 

strain, and longer operational lifetimes than microfibers [29]. Therefore, nanofiber webs would 

be a good choice for robust sensors and actuators. In addition to mechanical strength, it was 

observed that polarization, that is associated with the piezoelectric properties, occurred due to 

shear forces caused by the stretching of the fiber, the applied electric field, and rapid evaporation 

of the solvent in the jet [24, 30-32]. Electrospun PVDF fibers were reported with a piezoelectric 
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constant d33 of −57.6 pm/V which is almost twice the value reported for PVDF thin films [33]. 

Polymer chains were aligned along the axis of the fiber [34, 35] and also through the thickness of 

the web [13, 22]. In addition, it was observed that 70 nm diameter fibers have higher beta phase 

crystallinity than 170 nm and 400 nm diameter fibers, suggesting a higher piezoelectric constant 

for smaller diameter nanofibers [36]. Also, novel electrical properties of nanosized PVDF 

structures were reported [37]. Therefore it is desirable to produce nanoscale PVDF fibers, but 

this was challenging since it was difficult to know what processing conditions lead to nanoscale 

PVDF fibers. 

2.2.4.2 Porosity and Permeability 

The performance of desalination membranes was impacted by the PVDF fiber web 

thickness, interfiber spacing, and by the porosity [38]; this study reported that the fiber diameter 

did not have any direct effect on desalination performance. For desalination it, was desirable to 

have webs with high porosity and interfiber spacing. This study looked at porosities ranging 

from 0.85 to 0.93 and average fiber diameters in the range of 1 - 1.3 µm. Therefore it is desirable 

to produce PVDF webs with controlled pore size and porosity, but this was challenging since the 

only method reported to control pore size and porosity was by controlling the fiber diameter [39].  

2.2.4.3 Surface Area and Biocompatibility 

For applications to tissue engineering, the desired structure of the fiber webs was 

dependent on the tissue that was being repaired. Certain attributes were identified as desirable to 

control including, but not limited to, biocompatibility, porosity, surface to volume ratio, 

biodegradability, and the size of the web features [40]. Also, the wetting properties could alter 

the performance of fiber webs in certain applications. The influence of fiber structure on wetting 

properties was studied, and it was shown that the fiber structure, including beads, can modify the 
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contact angle [41]. Once again it is desirable to produce PVDF webs with controlled pore size 

and porosity. It is also desirable to produce PVDF webs with controlled bead structure, but this 

was challenging since there was limited understanding of how to control the structure of beads.  

2.2 Electrospinning  

In order to control the structure of fiber webs it is important to understand he 

electrospinning process. Electrospinning is a method for synthesizing a variety of polymer fibers 

that are used for a broad range of applications that include protective clothing, filters, drug 

delivery, catalysts for wound healing, and sensors [42]. The foundational work of 

electrospinning took place by Formhals in 1934. The patent issued to Formhals documents the 

formation of fibers using electrical charges [43]. Fundamentally an electrospinning setup consists 

of a dispenser or reservoir for a polymer solution, a high voltage power supply, and a collector, 

Figure 2 shows a schematic of a typical electrospinning setup.  

 

Figure 2. A schematic of a typical electrospinning setup. 
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The process of electrospinning occurs as electrostatic charges build up at the surface of a 

polymer solvent solution or polymer melt. A jet or multiple jets form and accelerate toward a 

collector due to an applied electric field. Under ideal conditions the fiber travels from the 

dispenser to the collector and the solvent evaporates leaving a polymer fiber. As the 

electrospinning jet is pulled towards the collector, the jet undergoes bending instabilities driven 

by the electrostatic forces. The instability is often visible in large diameter fibers and an example 

of the bending of the fiber is shown in Figure 3. 

 

Figure 3. An SEM image that shows a PVDF fiber with looping and spiraling caused by the 

bending instability of the jet. 
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The bending instability gives rise to looping and spiraling motion and results in a 

nonwoven fiber web. Figure 4 shows a PVDF fiber web, and how the majority of fibers are 

deposited in a concentrated region. 

 
 

Figure 4. PVDF fiber web on an aluminum collector. 

 

The primary advantage of electrospinning over other techniques is its ability to make 

nano and microsized fibers [44, 45]. Overall, there were many advantages of using the 

electrospinning process including:  

1. It is capable of producing some of the smallest fibers and feature sizes. 

2. It is a scalable production method [46]. 

3. A large range of possible feature sizes are possible. 
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4. It is suggested that because electrospinning is a continuous process fibers could be as 

long as several kilometer [34]. 

5. It does not require vacuum equipment. 

6. There is minimal use of heat, reducing the production cost. 

7. The process causes polarization of PVDF fibers  [36, 47]. 

2.2.1 Electrospinning Setup 

Different applications identified different electrospinning setups and parameters that 

could affect web structure. Typically researchers will use a dispenser driven by a syringe pump 

in order to control the material puming rate. Many industrial setups utilize different dispensers in 

order to increase production rates. For example, many systems work by transferring solution to a 

wire or a rotating drum instead of pumping it through a needle [48]. While these systems look 

different they still operate on the same principles. The high voltage power supply is used to 

create an electric field between the dispenser and the collector. Electrospun fibers can be 

collected in a number of ways to produce randomly orientated fiber webs [49], aligned fiber 

webs [50], spooled fibers, and controlled patterns [21, 51]. The collection of aligned electrospun 

fibers is achieved by using near field electrospinning, rotational collectors, or by controlling the 

electric field. 

2.2.1.1 Far Field and Near Field Electrospinning 

Traditional production of electrospun fibers used far field electrospinning (FFES) with a 

distance from the dispenser to the collector, referred to as the depth of field, greater than 1 cm. In 

FFES nanofibers will not be aligned unless there is control of the electric field or the collector 

[42]. During near field electrospinning (typically the depth of field is around 1 cm or less) it was 

possible to use direct write techniques by moving the spindle or collector to direct the deposition 
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of fibers similar to additive manufacturing techniques found in 3D printers [52]. This was 

possible because the jet instabilities are reduced at such small distances. There were examples 

that show that near field electrospinning allows highly controlled fiber deposition [53] and 

tailored three dimensional structures [52]. Direct write techniques for PVDF microfibers was 

explored by researchers at the UC Berkeley Microfabrication Laboratory. This work was 

replicated and in both cases the polarization direction was along the fiber length, and alignment 

was achieved with a combination of stretching and post electrospinning poling [33, 54]. This 

research showed the feasibility of PVDF as an energy generator and even an actuator [33]. Near 

field electrospinning has impressive control, but it was reported that polling was required for 

piezoelectric functionality due to the lack of fiber stretching and the large fiber diameters. 

Additionally, NFES is not suitable for producing large quantities of functional PVDF nanofibers 

due to low production rates [55]. 

2.2.1.2 Electrospinning Collectors 

A variety of configurations of collectors can be used to control the fiber structure and 

orientation during the electrospinning process, including auxiliary electrodes, parallel electrodes, 

needle grids, rotating drums, moving belt collectors, spinning collectors, and water based 

collectors [56-58]. Typically the purpose of reconfiguring the collector is to create a preferential 

alignment, create a yarn, or to optimize nanofiber production rates. Rotational substrates provide 

a more scalable process, as a method capable of achieving a degree of fibers alignment. High 

rotational (1000 - 4000 rpm) drums have been used to get highly aligned PVDF fibers [59]. 

Figure 5 shows aligned PVDF fibers on an aluminum substrate using a rotating drum at 

approximately 4000 rpm‟s. 



www.manaraa.com

15 

 

 

Figure 5. An SEM image showing PVDF fibers aligned using a rotating collector. 

 

Collection is important because of the inherent directionality of piezoelectric materials 

[22]. Rotating collectors were used to fabricate aligned PVDF nanofibers and are reported to 

increase crystallinity of PVDF fibers [60]. Therefore, alignment is one of the ways to control the 

piezoelectric functionality, but as the thickness of the web increased the alignment of webs 

decreased for rotating collectors suggesting there are limits to using this approach. Therefore, 

due to this production challenge, additional methods for controlling piezoelectric functionality 

were desired.  

2.2.2 Electrospinning Parameters 

In addition to the collector there are processing parameters that can be used to influence 

the structure of the fiber web.  As previously mentioned the main structural characteristics that 

were reported to affect the performance are the fiber diameter, bead structure, and web geometry 

[39]. Average fiber diameter of the web can affect properties associated with surface area, pore 

size, and web density. Defects can alter functionality by reducing uniformity, changing surface 
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area, altering permeability, and changing the mechanical properties of the fiber web. Due to the 

wide variety of applications it is critical that manufacturers and researchers are able to produce 

fiber webs that are tailored for a target application. Investigations into controlling the 

electrospinning process fell into three approaches: 

1. studies investigated theoretical calculations involving fluid dynamics and electrostatics 

[61, 62], 

2. studies investigated system parameters, typically rheological and electrical 

measurements, of the electrospinning system [35, 62, 63], 

3. And studies investigated the influences of initial conditions including solution and 

processing parameters [64, 65]. 

 

Theoretical calculations provide key insights into which parameters were important and 

suggested mechanisms for modifying the electrospinning process. System parameters of the 

electrospinning system were difficult to control directly because they were dependant on 

multiple control variables and ambient parameters. The influence of initial conditions on the 

production of fiber webs was typically used to modify the structure of the fibers. By changing 

the solution and processing parameters it was possible to influence the structure of the fibers and 

overall web. Table 2 lists all of the electrospinning parameters identified by all three approaches.  

Table 2. List of electrospinning parameters. 
Solution  

Parameters 

Processing 

Parameters 

System  

Parameters 

Ambient 

Parameters 

Polymer Mw Pumping Rate Reynolds Number Temperature 

Solutions Concentration Voltage Surface Tension Humidity 

Additives Needle Diameter Electrospinning Current Pressure 

Solvent Ratio Depth of Field Electric Field  

 

A wide range of electrospinning parameters allowed for a wide variety of possible structures. 

Figure 6 gives a few examples of structures that are typically not reported for electrospun PVDF.  
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Figure 6. Shows three SEM images of different electrospun PVDF structures. Image A 

shows PVDF ribbons. Image B shows coiled PVDF fibers. Image C shows fibers rough 

fibers. 
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Solution parameters and processing parameters were directly controlled. It was reported 

that as the polymer molecular weight [45, 65, 66] and solution concentration [44, 65, 67-69] 

increased the diameter of the fibers increased. Furthermore, increasing depth of field [68, 70] and 

amounts of low vapor pressure solvents to the solution [71, 72] reduced the diameter of the 

fibers. The reported impacts of voltage [17, 44, 64, 67, 68, 73], needle diameter [64, 74, 75], 

conductive additives [67, 74],  and pumping rate [44, 64, 67, 73] on fiber metrics varied. 

Additionally, it was reported that increased molecular weight [66], conductivity [76],  and levels 

of low vapor pressure solvents [64] reduced fiber beading. While increased voltage [64] 

increased fiber beading and the impacts of increased needle diameter [64, 76] on fiber beading 

varied.  

Many studies reported different influences for the same parameters. This may be due to a 

difference in the ranges each experiment explored or may be due to the interaction of 

electrospinning parameters altering the overall effect of the parameters. A survey of current 

literature on electrospinning of polymer solutions showed that research groups use a variety of 

processing parameters and their research yields a variety of results, which were often 

contradictory and rarely looked at statistical significance of the data [17, 32, 50, 71, 76, 77]. 

Since the influence of many parameters on the structure of fiber webs was unknown it was 

difficult to control the structure and influence the web performance. The findings of different 

studies are summarized in Figure 7. The numbers above the arrows correspond to literature that 

discussed the effect of the electrospinning parameters. A solid line indicates a positive 

correlation and a dashed line indicates a negative correlation. A grey line indicates that different 

studies reported different effects. The influence of parameters on fiber beading indicates an 
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increase, or decrease, in the number of beads, but does not indicate anything about the structure 

of the bead itself.  

 
 

Figure 7. A figure showing the influence of solution and processing parameters on 

electrospinning reported in the literature. 
 

In addition to solution parameters and processing parameters other studies reported that system 

parameters such as the Reynolds number, viscosity, surface tension, charge density, electric 

field, and electrospinning current can influenced the electrospinning process [35, 63, 65, 78-80].  
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2.2.3 System Parameters 

2.2.3.1 Influence of System Parameters on Fiber Diameter 

Reneker, Yarin, and Thompson modeled the diameter of electrospinning jets based on the 

continuity equation, momentum equation, and charge phenomena [35, 63, 65]. Using this 

approach, they identified important system parameters including the viscosity, electric field, and 

surface tension. They indicated that further experimental work was needed since the effect of 

parameters can vary due to the polymer and solvent, the electrospinning setup, and ambient 

conditions. Another analytical model was proposed by Fridrikh et. al. noted that the surface 

tension and electrical current influence the terminal jet diameter [81]. The terminal jet diameter 

refers to the diameter of the jet when it reaches the collector. This model was good at predicting 

the average fiber diameter of polyethylene oxide fiber webs based on select parameters, but 

showed difficulty in predicting fibers of other polymers and solvent combinations. This was 

attributed to differences in charge carriers and solvent properties. Therefore, regression models 

specific to electrospinning PVDF fibers were desired.  

2.2.3.2 Influence of System Parameters on Fiber Beading 

In addition to controlling the average fiber diameter these studies often reported the 

occurrence of fiber beading. Lord Rayleigh first reported the understanding of fluid dynamics of 

a jet [86]. His analysis identified the surface energy as a defining parameter to determine the 

preferential shape of a fluid. He noted that a cylindrical jet had a higher surface energy than a 

series of spherical droplets with a similar volume, and those jets would break up into drops in 

order to reduce the total surface area. Fong documents the impact of electrical charge on beaded 

fibers [82]. The work presented suggested that certain processing parameters influenced the 

number of beads in the web, which suggested that it is possible, in some cases, to control the 
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number of beads in the web. Fong‟s research reported that when the ionization of the system was 

small the fibers tended to be smoother and that as charges on the surface of the jet increased the 

number of bead nodes per length increased. The charge on the jet can be controlled by altering 

the electric field.  Figure 8 shows an SEM image of beads in a fiber web. 

 

Figure 8. An SEM image of PVDF fibers and beads. 

In other research, Liu presented data that suggested increasing solution concentration reduced 

beading, increasing surface tension increased beading, and changing solvents affected beading 

[83]. In other studies the viscosity and conductivity were found to impact bead length and bead 

width [82, 84].  
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2.2.3.3 Viscosity 

Many studies that investigated the electrospinning process explored the influences of 

rheological properties. Viscosity is a measure of the resistance to shear stress. A fluid that is 

moving through a tube requires a pressure difference between the two ends in order to overcome 

the resistance of the fluid due to frictional forces between the fluid and the walls of the tube. The 

defining equation for viscosity is Equation 1.  

 
F =   

du

dt
 (1) 

 

The two dimension laminar shear flow of a fluid between two plates is shown in Figure 9.  

 

Figure 9. A schematic of laminar shear flow between two plates. 
 

One of the first comprehensive works on the viscosity of solutions was by Arrhenius 

[85]. Arrhenius discussed the effects of temperature, dissociation of molecules, and the solute 

concentration on viscosity. 
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There are many different ways to analyze fluid properties. Viscometers use the principle 

of laminar shear flow between two plates to measure viscosity. Figure 10 shows one common 

type of viscometer that uses a motor to drive a measuring bob with a cup that is fixed.  

 
 

Figure 10. A schematic of a rotation viscometer. 

 

The viscosity is measured by measuring the motor torque. Generally speaking, a higher viscosity 

sample will take more force to drive the motor; this is called the Searle principle. The motor is 

run at low rotational speeds in the laminar regime to avoid turbulent flow. The equation for the 

shear rate of the surface of the bob is 

 
γ =  

2ωRc
2

(Rc
2 − Rb

2 )
 (2) 

 

Rc
2 = Radius of container (m) 

Rb
2 = Radius of bob (m) 

γ  = Shear rate (s
-1

) 

ω = Angular velocity (radians/s) 
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The shear stress in relationship to the measured torque is 

 
τ =  

M

2πRb
2 L

 (3) 

 

M = Measured torque (Nm) 

L = Length of bob 

 

And finally, using Equation 2 and Equation 3, the dynamic viscosity can be calculated 

 
η =

τ

γ 
 (4) 

 

τ = shear stress (N/m
2
) 

η = dynamic viscosity (Pa·s) 

γ  = Shear rate (s
-1

) 

 

The dynamic viscosity is commonly reported in centipoise (1 cP = mPa·s) [86]. The dynamic 

viscosities for solvents used in this study were previously reported [71] and the values are 

recorded in recorded in Table 3. 

Table 3. Viscosity of solvents. 

Material Acetone DMF 

Viscosity (cP) at 20°C 0.3 0.82 

 

The impact of viscosity on fiber formation was investigated, and it was noted that 

increasing viscosity reduced beading and increased fiber diameter [80, 82, 87]. PVDF solution 

viscosity was studied for a variety of solvent ratios and it was reported that by changing the 

solvent ratio the viscosity was changed and influenced the average fiber diameter [88, 89]. In one 

case it was reported that the viscosity of the solution increased steadily with time, approximately 

5 times more viscous after 10 minutes, showing that it may be a difficult parameter to control 

due to solvent evaporation [87]. Therefore, it was important to keep the solutions sealed to 

reduce evaporation of the solvent. It was reported that the viscosity was related to the 

concentration and the molecular weight by a power law relationship [66, 90]. Therefore, the 

viscosity is dependent on multiple solution parameters.  
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There were attempts to use single parameters models to predict the web structure by 

looking at the chain entanglement of the polymer solutions. The chain entanglement is related to 

the type of polymer, the molecular weight, and solution concentration [66]. The degree of chain 

entanglement is important as it relates to the state of the solution being either dilute, semidilute-

un-entangled, or semidilute entangled. The state of the solution was shown to impact the 

electrospinning of polymer solutions by Pankaj Gupta [80]. Their work showed that solution 

parameters were important for fiber formation and controlling the average fiber diameter. This 

method traces back to the Huggins equation for solution viscosity and an understanding of the 

critical chain overlap.  The results for this work suggested that viscosity of dilute solutions was 

linearly dependant on concentration. Therefore it is expected that relationships between the 

solutions parameters will linearly influence the system parameters, this supports the approach of 

using regression modeling. 

2.2.3.4 Reynolds Number 

The dependence of flow characteristics on fluid properties and flow volume was first 

documented by Osborne Reynolds in 1883 [91]. Reynolds was able to develop a dimensionless 

parameter based on the fluids velocity, dynamic viscosity, density, and a characteristic length.  

 
Re =

ρ v L

μ
  (5) 

   

v is the mean velocity (m/s) 

L is a characteristic linear dimension (m) 

µ is the dynamic viscosity of the fluid (Pa·s) 

ρ is the density of the fluid (kg/m³) 

 

From Equation 5, it is observed that the Reynolds number is a ratio of the inertial forces to the 

viscous forces. Therefore, the Reynolds number is influenced by both solution and processing 

parameters. The Reynolds number was used in analytical models [61, 62] and numerical 

http://en.wikipedia.org/wiki/Dynamic_viscosity
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Density
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simulations [92] and is expected to influence the electrospinning process. These studies look at 

the Reynolds number of the jet during the process after the jet leaves the dispenser. These studies 

did not report the influence of the Reynolds number of the solution on the web structure before 

the solution left the dispenser. 

2.2.3.5 Surface Tension 

The surface tension is due to the cohesive forces between liquid molecules. Figure 11 is a 

force diagram showing the attractive forces that liquid molecules exert on one another due to 

Van der Waals forces.  

 

Figure 11. A force diagram that shows the cohesive forces between liquid molecules. 

 

From the figure it is clear that the molecules on the outside surface do not have the same number 

of neighboring molecules that exert a force on them as the central molecule. This means that 

there is net force acting toward the center of the liquid on the outside surface molecules. This net 
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force is what results in surface tension. The surface tension can be measured for different liquids 

using a tensiometer. The theory behind a tensiometer can be explained using the model for a 

plate suspended in a liquid. The model is illustrated in Figure 12.  

 

Figure 12. A schematic showing the force diagram of a plate in a liquid. 

 

Figure 11 shows the forces on the plate and is the basis for Equation 6. 

 
Fplate = Weight + Surface Tension + Upthrust (6) 

 

If thickness of the plate is defined as t then the force on the plate is 

 
 Fplate = ρP lwt + 2 w + t · cos(Ѳ) · SurfaceTension + ρLhwtg (7) 

 

ρP  = Density of the plate 

ρL= Density of the liquid 

l = Length of the plate 

w = Width of the plate  

t = Thickness of the plate 

Ѳ = Contact angle 

g =Acceleration due to gravity 

F = Total force 

 

The equation is further simplified by eliminating the weight term. This can be done by zeroing 

the scale of the system; in effect the weight term is absorbed into the total force term. The 

upthrust can be eliminated by raising the plate out of the liquid until the lower edge is level with 
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the surface thereby making the immersed height zero. Another simplification can be made by 

assuming the contact angle to be zero. While this assumption is not valid for all cases, it can be 

forced to be approximately zero through a method discussed later. Therefore the remaining 

equation is 

 
Surface Tension =

F

2(w + t)
=

Force

Perimeter
 (8) 

   

In the case of a plate, an absorbent material is used to reduce the contact angle to zero. In 

the case of a ring, the contact angle reduces to zero because the ring acts as a plate without ends. 

Further detail on theory and correction factors for tensiometers can be found in the Nima 

technology manual [93]. The surface tension can be affected by temperature, so it is 

recommended to always take measurements at the same temperature. The tensiometer used in 

this work is pictured in Figure 13. 

 
 

Figure 13. The Sigma 701 Tensionmeter that was used for measuring the surface tension 

of solutions in this research. 
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The surface tension was reported to influence the electrospinning process. Increasing 

surface tension was expected to increase beading, but was also expected to increase the jet 

diameter which was shown to reduce beading [80, 82, 83]. Also, it was identified that increasing 

the surface tension increased the critical electrospinning voltage, where the critical voltage is the 

minimum voltage at which a jet forms [94]. One research group suggested that solvent mixtures 

with lower surface tensions allow the fiber to stretch longer before complete solvent evaporation 

takes place producing a smaller fiber [65]. In addition to influencing the fiber diameter the 

surface tension of solutions was shown to influence the crystallinity of electrospun PVDF fibers 

[95].  

2.3 Design of Experiments and Regression Modeling 

So far in section two of chapter two it is clear from the reported literature that solution 

and processing parameters influence the system parameters and that these parameters are 

important for the electrospinning process. It is also apparent that not a single study investigated 

all of the electrospinning parameters simultaneously. Therefore the complexities that arise from 

the interaction of parameters were unknown. In addition many of the studies shown in Figure 7 

looked at electrospinning polymers other than PVDF. Therefore the validity of applying these 

relationships was uncertain. These challenges can be overcome by utilizing an appropriate 

experimental design. 

Previous studies on electrospinning PVDF investigated electrospinning using one factor 

at a time (OFAT) experimental designs. Yet, the large number of parameters and the complexity 

of the relationships suggested the need of an efficient experimental design. Design of 

experiments (DOE) can be used to investigate the relationships between parameters and a 

defined outcome. DOE is often used to optimize or minimize a desired outcome of a process. 
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Two level factorial designs are considered one of the most efficient and versatile experimental 

designs. The advantages are that the experiments have relatively small sizes when compared to 

other higher level approaches that are able to detect the interaction of parameters. Therefore, 

large production spaces can be studied.  

Two level designs are best used for linear relationships, or nearly linear. In this study, a 

fractional factorial experiment was used due to the large number of parameters investigated. 

Often a fractional factorial experiment can be carried out in such a way as to lose little or no 

information about the model. This is true if high level interactions are not important for the 

model. The analysis of a two level factorial design assumes that the residuals are normally 

distributed and that the residuals are independent with constant variance. These assumptions can 

be investigated by plotting the normal of the residuals and plotting the residuals versus the 

predicted values. There were a few researchers who used orthogonal design and central 

composite design to investigate electrospinning, but the maximum number of parameters 

investigated was four which limited the production space and number of parameter interactions 

investigated [64, 68, 96, 97]. A two level factorial design by itself is not able to detect any 

curvature that may be associated with the effect of the parameters. This limitation is overcome 

with the addition of center points and axial points to the experimental design. This type of design 

is called a central composite design (CCD).  

2.3.1 Central Composite Design 

CCD is a response surface methodology that is built upon a foundation of a two level 

factorial design. By including axial points and center points to a factorial experimental design it 

is possible to account for curvature that a two level factorial design cannot detect. A comparison 
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of investigated production space between OFAT and CCD is shown in Figure 14 for a three 

parameter process. Each data point represents a different set of parameters.  

 

Figure 14. A schematic showing the investigated production space using one factor at a 

time and central composite design for an experiment with three control variables. 

The figure illustrates how the CCD design is able to investigate a larger production space and 

still include curvature by including additional measurements in between and outside the 

investigated space of a two level factorial design. Once the experiment is performed, statistical 

methods are needed to evaluate which parameters are important and what their influence is.  

2.3.2 AIC Method 

The Akaike information criterion is a measure of the quality of a statistical model and 

was first proposed by Akaike in a 1971 symposium and later published in 1974 [98]. The AIC 

method works by comparing different models relative to one another. This approach is 

advantageous because it looks at the tradeoffs between the goodness of fit and the number of 
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model parameters. But the AIC method alone provides no indication of the goodness of fit. The 

AIC is defined as 

 AIC = 2K − 2 ln L  (9) 

 

K = Number of degrees 

L = Maximized likelihood function 

 

The AIC is reported to perform better then the Bayesian information criterion (BIC) and is, 

therefore, used in the presented work [99, 100].  

2.3.3 Regression Models 

The AIC method can be used to select the best fitting model. The terms in the model are 

based on the model parameters. The coefficients of each term are related to the influence of each 

parameter and the interaction.  When a regression model is used to predict a continuous outcome, 

such as the average fiber diameter, a regression fit is used. When a regression model is used to 

predict a nominal value, such as the occurrence of beading, a nominal logistic regression 

equation is used. In both cases an R
2
 value can be used to measure the goodness of fit.  

For large models involving many parameters there is a danger in over fitting the data. 

One benefit of the AIC method is that the number of parameters is taken into account and the 

method attempts to reduce the number of parameters needed without reducing the goodness of 

fit. Another way to avoid over fitting the data was to examine the adjusted R
2 

value for linear 

regression or the entropied R
2
 value for nominal logistic regression. If the adjusted R

2
 value is 

much lower than the R
2
 value there may be over fitting occurring in the regression model. Once 

the regression model is established, using the AIC method, it is necessary to interpret the 

meaning of the equation. The interpretation of the model is based on the value of the model 

coefficients.  
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2.3.4 Systems Model 

A systems model is a conceptual framework describing a system comprised of multiple 

subsystems. A systems model can be supported by regression models but these are different. A 

systems model helps plan and anticipate complex behavior in a comprehensive way. Systems 

models are often interdisciplinary in nature. For this research, a systems approach was 

investigated as a way to understand the electrospinning process. In this research the subsystems 

that comprised the systems model included the: processing system, solution system, web 

structure system, and the functional properties system. Therefore the systems approach 

encompassed aspects of materials science, fluid dynamics, electrostatics, and manufacturing.  
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Chapter 3: Producing Defect Free Fibers 

3.1 Introduction to Producing Defect Free Fibers 

The first step towards influencing the functional properties of electrospun PVDF webs 

was to identify what production defects commonly occur. The second step was to investigate at 

which settings these defects occurred within an experimental design. Completing these steps 

allowed for the possibility of developing regression equations and finally gaining an 

understanding of which parameters influenced the occurrence of production defects from the 

coefficients of the regression equation.  

This had to be done because there was not any comprehensive method reported in the 

literature to anticipate the occurrence of production defects during the electrospinning process. 

Most electrospinning research focused on new materials, new setups, or new applications for 

fiber webs. Therefore many of the difficulties in producing defect free fiber webs were not 

reported in the literature. There were reports on the influence of parameters on beading [82, 83, 

101]. There was also one study that documented the transition from electrospinning to 

electrospraying [71]. These two defects were documented and OFAT experiments were used to 

estimate the influence of a select set of parameters on the occurrence of these defects in the web.  

Therefore the understanding of why beading and electrospraying occurred was confined 

to a small set of production parameters. Consequently, the possibility of applying the reported 

parameter relationships was limited to a small production range for different parameters in 

relationship to one another were unknown, and this reduced the range. This limitation was 

overcome in this study by exploring all solution and processing parameters.  
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Four production defects were observed during the production of PVDF fiber webs. These 

production defects included beading, electrospraying instead of electrospinning, incomplete 

solvent evaporation of the jet, and the fiber bridging from the dispenser to the collector. In all 

four of these cases fibers were produced along with the defect creating a web with fibers and 

defects.  

The following research explores the possible production space for defect free fiber webs 

by utilizing experimental design. The parameters that were already reported to influence the 

electrospinning process were used as a starting point to investigate if these parameters could 

adequately control the occurrence of production defects in the explored production space. This 

was done by documenting the occurrence of defects and then fitting the data using logistic 

regression. Then the relationships of important parameters are reported by interpreting the terms 

of the regression models of different defects. Figure 15 shows four different samples with the 

production defects observed in this study. 

 

Figure 15. SEM image of four different fiber webs with production defects. Sample A 

shows a fiber web with beading. Sample B shows a fiber web with incomplete evaporation. 

Sample C shows a sample with electrospraying. Sample D shows a sample where bridging 

occurred. 
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Sample A shows fiber beading, sample B shows a web with incomplete solvent evpaoration, 

sample C shows a web with electrospraying, and sample D shows the results of a web that was 

produced when the fiber created a bridge betweeen the dispenser and collector.  Fiber bridging 

could be visually observed during the electrospinning process and is shown in Figure 16.  

 

Figure 16. Image showing a fiber that formed a bridge from the dispenser to the collector. 
 

These production defects altered the structure of PVDF fiber webs. Beading resulted in 

the concentration of PVDF in the shape of an ellipsoid and was usually connected to the fibers in 

the web. Incomplete solvent evaporation created distorted fiber symmetry.  Fiber bridging and 

electrospraying created production conditions that were constantly changing making it difficult 

to control the processing parameters. Therefore it was critical that any further analysis on the 

production of PVDF fibers must first deal with these defects. In order to understand why these 
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production defects occurred, a systematic study of how the processing parameters, solution 

parameters, and system parameters influence the occurrence of production defects was needed.  

3.2 Experimental Setup 

3.2.1 Electrospinning Equipment 

Figure 17 is a schematic of the laboratory setup that was used in this research and shows 

the processing parameters that were controlled throughout the experiment.  

 

Figure 17. A schematic of the electrospinning setup with processing parameters. 
 

The pumping system used was a PHD 2000 syringe pump. A 3 cc syringe was filled with 

solution; then a needle was attached using a luer lock.  The high voltage power supply, produced 

voltages up to 30 kV, was connected to the dispenser and collector with alligator clips. The depth 

of field was changed manually by moving the collector. Pictured in Figure 18, the entire setup 

was enclosed in two separate acrylic containers for safety reasons and to reduce any nuisance 

variables from the environmental.  
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Figure 18. An image of the laboratory setup. 

The electrospinning setup was used to control the processing parameters and measure the 

electrospinning current.  

3.2.2 Materials used for Electrospinning PVDF 

In addition to the processing parameters, the solution parameters were also controlled. 

The materials used in this work were PVDF with dimethylformamide (DMF) and acetone as 

solvents, and tetrabutylammonium chloride (TBAC) was added to modify the conductivity of the 

solution. The electrospinning solutions were prepared by mixing PVDF with the solvents and, in 

some cases, TBAC then stirring on a hotplate for 2 hours at 100°C. The solution was then set 
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aside for 22 hours and loaded into a syringe for spinning. Then the viscosity and surface tension 

was tested for each solutions mixture.  

The system parameters were measured but not included in the orthogonal experimental 

design. One reason for this was that adding four additional parameters into the experimental 

design would exponentially increase the number of measurements needed in order to resolve the 

effects of the parameters and interactions. However, the system parameters were observed to see 

if there were any noticeable trends in the data. The viscosity was used to calculate the Reynolds 

number of the flow through the needle. The Reynolds number was calculated using the formula 

associated with pipe flow [91]. The electric field was calculated from the voltage and depth of 

field settings. And the electrospinning current was measured across the power supply. The 

surface tension was measured using a tensiometer. 

3.2.3 Experimental Design 

 Setting up the CCD was the next step in understanding if any of these aforementioned 

parameters influenced the occurrence of production defects. A 2
8-2

 fractional factorial design 

with axial points and center points was used to identify the effects of the four solution parameters 

and the four processing parameters and their 2
nd

 level interactions on defect occurrence. Because 

this design included center points and axial points it was possible to know if there was any 

curvature, or non-linear correlations, associated with the parameters. Therefore, a minimum of 

80 runs was needed. In addition to the minimum number of run, replicates were included to test 

repeatability resulting in a total of 155 runs, which were made from 16 different solution 

mixtures. The occurrence of production defects was documented for each sample.  The degree of 

the defect was not measured since there was currently no standard way to measure the degree of 

electrospray, fiber bridging, or incomplete evaporation. Therefore, Nominal logistic regression 
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was used due to the type of data. The AIC method was used to select a model and the 

significance of individual parameters was judged based on their chi squared values. 

The parameters included in the analysis were chosen due to relevance noted in the 

literature about electrospinning PVDF fibers and general electrospinning [64, 66, 67, 102, 103]. 

The ranges for each parameter investigated in this experiment are listed in Table 4; the range of 

system parameters measured is also listed. Ambient parameters, such as temperature and 

pressure, were monitored but not intentionally varied.  

Table 4.  Parameters and ranges used for the study of defects. 

Solution Parameters Lowest Setting Highest Setting 

Polymer Mw 180,000 g/mol 530,000 g/mol 

Solution Concentration 15 wt% 17 wt% 

Conductive Additive None 3 wt% TBAC 

Solvent Ratio 2 to 8 Acetone to DMF 1 to 1 Acetone to DMF 

Processing Parameters Lowest Setting Highest Setting 

Pumping Rate 5 µl/min 50 µl/min 

Voltage 15 kV 20 kV 

Needle Diameter 0.413 mm 0.838 mm 

Depth of Field 10 cm 20 cm 

System parameters Lowest Measured  Highest Measured 

Surface Tension 31.0 mN/m 41.3 mN/m 

Electric Field 2 kV/m 0.75 kV/m 

Reynolds Number 0.0002 2.2 

Electrospinning Current 0 µA 35 µA 

   

The significance of each parameter and the effect of each parameter were accomplished with 

JMP SAS©. The AIC method was used to determine the best fit model.  

3.2.4 Characterization of Defects in Electrospun Webs 

Scanning electron microscope (SEM) images were taken using a Hitachi SU-70 

microscope. Fibers were coated with a thin layer of gold palladium, approximately 5 nm, to 

increase conductivity and consequently improve image quality. In addition to documenting the 

occurrence of defects, the average fiber diameters were also measured using QuartzPCI software. 

Typically over one hundred and fifty different fibers were measured per experimental run to get 
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an accurate average. The presence of fiber beading, incomplete solvent evaporation, and 

occurrence of electrospraying were documented for each sample. Examples of fiber beading are 

shown in Figure 19. 

 

Figure 19. Shows SEM images of different samples with fiber beading. 
 

Beading occurred for many of the samples. Beading is a result of the Rayleigh instability. 

As the solution jet was pulled, the jet desired to reduce surface area and therefore the surface 

energy. The level of beading varied significantly from one sample to the next indicating that 

there was not a single parameter that controlled the beading. In general, samples with a larger 

average fiber diameter had a lower number of beads. Another observation was that the beads 

tended to be more spherical in nanofiber webs than in microfiber webs. Another defect referred 

to as electrospraying is shown in Figure 20. 



www.manaraa.com

42 

 

 

Figure 20. Shows SEM images of different samples with the electrospraying defect. 

Electrospraying occurred as the force due to the electric field exceeded the surface 

tension of the droplet on itself or the forces between the droplet and the needle. The result was a 

large charged droplet of solution being pulled toward the collector; often this drop would not 

make it to the fiber web. This resulted in a large amount of solution being wasted. Alternatively, 

the solution droplet would be pulled toward the collector leaving a pool of solution that would 

evaporate over a longer period of time leaving a portion of the web with various structural 

defects. Figure 20 shows the different effects of electrospraying on the web. Sample A shows 

how pore size is reduced by electrospraying; sample B shows how islands of solution formed on 

the web; sample C shows how the islands can had an appearance of cracks after drying; sample 
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D shows another sample with islands of solution with a different morphology. Figures 21 shows 

PVDF webs produced under processing conditions that resulted in incomplete solvent 

evaporation. 

        
 

Figure 21. Shows SEM images of different samples with incomplete evaporation. The 

SEM image of sample A is a top view. SEM images of samples B, C, and D were taken at 

an angle.   
 

The most notable characteristic of this production defect were asymmetric fibers. Image 

A shows a top view where images B, C, and D are tilted at an angle to give a different view of 

the asymmetric geometry. The side view reveals that these fibers appear pressed down. The 

forces due to the impact of the fiber on the collector as well as the electric force applied to the 
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polymer solution due to excess charge result in the diameter of the fibers being elongated in the 

same plan as the collector.  

Figure 22 shows four different samples that were produced with procesing paramters that 

resulted in the fiber bridging from the dispensor to the collector. This created highly unstable 

conditions that resulted in high levels of beading, high fiber diameter standard deviation, and 

incomplete evaporation. 

 

Figure 22. Shows SEM images of PVDF samples where fiber bridging occurred. 

When fiber bridging occurred there was not a distinct characteristic of the webs, but rather fiber 

bridging resulted in a combination of high beading, incomplete solvent evaporation, and 

electrospraying. There were times when the solution jet came into contact with the bridged fiber 
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and resulted in a reduced depth of field. When this happened, it did not allow sufficient time for 

the solvent to evaporate before depositing onto the surface of the bridged fiber. Additional 

instabilities occurred as there were modifications to the electric field as charges built up on the 

fiber and current was able to travel along the bridged fiber. Excess charge was reported to 

influence beading, and this may be the cause of the high levels of beading that were observed in 

Figure 22.  

3.2.5 Defect Free Production Space for Electrospun PVDF Fibers 

Over 150 samples were produced within the experimental range and the occurrence of 

defects was documented. The occurrence of beading, electrospraying, and incomplete 

evaporation in relation to fiber diameter is shown in Figure 23. 

 

Figure 23. The figure shows the occurrence of defects and defect free fibers in relation to 

average fiber diameter, where each data point represents one sample. The data points are 

randomly jittered along the horizontal direction.   
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Fiber bridging was not included as a separate category since the fiber diameter 

distribution was bimodal and would not accurately describe the average fiber diameter of the 

web. In all there were eight samples that fell into the fiber bridging category. In Figure 23 each 

row represents a separate category. Each data point represents one sample; points are jittered 

about the horizontal axis in order to avoid overlap of data points.  The first row shows all of the 

samples for this study plotted against the fiber diameter. The low sample count in the second row 

shows that it was rare for all defects to occur simultaneously. The third row shows that beading 

and electrospraying were associated with producing fibers below 200nm. The fourth row shows 

that it was possible to produce fibers that contained beading but no other defects from 25 nm -

800 nm. The fifth row had a couple of samples with no beading but did have the other two 

defects present. And the sixth row shows that as the average fiber diameter increased there was a 

higher likelihood of incomplete evaporation.   

This trend was expected since the solvent in a thicker solution jet would not evaporate as 

quickly as the solvent in a smaller diameter jet, because the surface area to solvent volume ratio 

was much lower for a thicker jet. The seventh row contains a few samples that were free of 

beading and incomplete solvent evaporation but still had electrospraying. 

The eighth row shows that it was possible to produce defect free fibers in a range 

between approximately 300 nm - 1400 nm. This does not mean it is impossible to produce defect 

free fibers outside this range, but this research showed that it was possible to produce defect free 

PVDF fiber in this range. It may be possible to expand this range by understanding how the 

electrospinning parameters impact the different production defects.  In order to do this, the 

influence of each electrospinning parameter on defect occurrence must be understood. 
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3.3 Building Predictive Regression Models for Defect Occurrence 

The next step was to build regression models from the data collected. The models were 

built from the orthogonal effects and were based on a coded experimental design. This is 

standard practice for design of experiments work because it is easier to compare one effect to 

another. But in order to make the regression equations user friendly, the equations are shown 

with respect to the actual values and not the coded values. This is why the normalized estimates 

are not the same as the coefficients for the regression model. The issue with using the inputs as 

opposed to the coded variables is that it was not as intuitive to compare coefficients. For 

instance, in the following model for fiber beading the coefficient for X1 is smaller than the rest of 

the coefficients and could be mistakenly interpreted to mean that this is the least important term. 

But the main reason the coefficient is so small is because the input for the molecular weight term 

is a high numerical value. Therefore, for the equations, it is critical to look at both the coefficient 

and the input value of the parameter when comparing coefficients in these equations.  

3.3.1 Logistic Regression Model for Fiber Beading 

The logistic regression equation found for fiber beading is  

 

 
Likelihood Beading =

1

 1 + e−Lin [   No  Beading ] 
 (10) 

 
 Lin No Beading 

= −356 − 39.9  𝑋2 + 15.9 + 0.000702 (𝑋1 + 32000)
− 58.8 (𝑋4 + 1.1) +  221 (𝑋4 + 0.592) − 10.7 𝑋6 + 1.89 𝑋6𝑋7 

(11) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
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If the likelihood value was close to 0 then most likely there was not beading; if it was close to 

one then the formula is predicting beading will occur for that particular set of parameters. The 

high influence of molecular weight could be due to the visible change in the viscosity of the 

solution. The viscosity was noticeably higher in solutions with the higher molecular weight of 

530,000. Decreasing viscosity increased beading possibly due to the reduced diameter of the 

electrospinning jet size. For a smaller jet size, it was more energetically beneficial for the jet to 

break up into beads and eventually drops. If the solvent evaporated quick enough the jet would 

not have time to break up into drops and instead resulted in beaded fibers. This observation 

supported the theory that beading was a result of the Rayleigh instability occurring in the jet and 

as the jet is in the transition stages of breaking into separate droplets it solidified before the bead 

breaks away from the fiber and forms a droplet.  In light of this, the depth of field and the solvent 

interaction term may be important because as the depth of field changes the time the jet has to 

break up into beads increases, and the solvent ratio affects the evaporation time of the jet. The 

voltage influenced the amount of charge in the jet and influenced beading, which is in agreement 

with what is said in the literature. The interaction between the needle diameter and the voltage 

may be due to the influence of these parameters on charge concentration at the dispensing tip. 

The electrospinning current, as measured by the power supply, went above approximately six 

microamperes, as seen in Figure 24, the fibers were all beaded. This suggests that the charge in 

the jet does have some influence on the beading of fibers and may provide a route for monitoring 

beading in some cases. Figure 24 suggests that in order to reduce the likelihood of beading the 

amount of charge in the electrospinning jet should be minimized. This could be done by 

changing the conductivity of the solution or by changing the electric field. 
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Figure 24. The occurrence of beading with respect to the electrospinning current, each 

data point represents one sample. 

3.3.2 Logistic Regression Model for Electrospraying 

The logistic regression equation found for the occurrence of electrospraying is  

 
No Electrospraying Likelihood =

1

 1 + e−Lin        No  Electrospray   
 (12) 

 

 Lin No Electrosrpay 
= −3.68 + 4.46 (X4 + 0.592) − 3.23 (X3 + 1.1)
− 0.30  X5 + 25.8 +  2.6 X2X3 +  1.8 ∗ 10−5 X2X1

+ 3.2 ∗ 10−10   X1 
2 + 0.00593  X5 

2 

(13) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
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If the likelihood value is close to 0 then most likely there will not be electrospraying; if it is close 

to one then the formula is predicting electrospraying will occur for that particular set of 

parameters.  

Once again the molecular weight played an important role in influencing the occurrence 

of this defect. As mentioned in the previous section on beading the same phenomenon applied 

for the molecular weight, only this time there was enough time for the electrospinning jet to 

break up into droplets. The conductivity of the solution played a significant role in the 

occurrence of electrospraying. As the conductivity of the solution increased the number of 

charge carriers increased. It may be that electric force per unit volume of solution was increased. 

When the electrostatic force in the droplet increased it allowed a jet to form. If the force was not 

high enough to form a jet the alternative was that the electrostatic force caused the solution from 

the dispenser to pull away, causing electrospraying. The pumping rate affects the mass transfer 

rate. As the mass transfer rate was increased electrospraying occurred more frequently. The mass 

transfer rate increased the size of the droplet at the tip of the syringe. Often this resulted in initial 

conditions that were in constant flux as the droplet increased to a point where the electric charge 

was large enough to pull the droplet away from the needle and to the collector, and then repeat 

the process. This would increase the vibrational perturbation of the droplet. Vibrational 

perturbation can cause the jets to break up and bead and explains why in the majority of cases 

where electrospraying was present so were beaded fibers.  

This study reinforced earlier findings that the solution concentration  plays a key role in 

the transition from electrospray to electrospinning due to the change in viscosity [104]. Although 

the finding were not as pronounced because the investigated range of solution concentration was 

not as large in our case. The molecular weight, solutions concentration, pumping rate suggest the 
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flow characteristic were important, therefore, the influence of Reynolds number on 

electrospraying was investigated. Electrospraying occurred at many different Reynolds numbers, 

but as the Reynolds number went above 0.005 all of the samples showed electrospraying as seen 

in Figure 25. Figure 25 suggests that at high mass transfer rates solutions with low viscosities 

should be avoided in order to reduce the occurrence of electrospraying. It was possible for 

electrospraying to occur at low Reynolds numbers suggesting there were other factors that 

contributed to the occurrence of electrospraying.  

 

Figure 25. The occurrence of electrospraying with respect to the Reynolds number, each 

data point represents one sample. 
 

 



www.manaraa.com

52 

 

3.3.3 Logistic Regression Model for Complete Solvent Evaporation 

The logistic regression equation found for complete solvent evaporation is shown below 

 

Complete Evaporation Likelihood =
1

 1 + e−Lin      No  Complete  Evaporation   
 (14) 

 Lin No Complete Evaporation 
= −14.04 + 9.96 (X7 + 0.62) + 2.04 ∗ 10−5 (X1

+ 32000) –  0.417 (X8 + 14.5) +  1.16 X2X6 − 2.15 X4X6

− 0.98 X2X8− 2.33 ∗ 10−6 X1X8 

(15) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   

 
If the likelihood value is close to 0 then most likely there will be complete evaporation; if it is 

close to one then the formula was predicting incomplete evaporation for that particular set of 

parameters. The following were proposed reasons why the terms in the model influenced the 

occurrence of complete evaporation: The solution parameters, needle diameter, and pumping rate 

all influenced the flow characteristics. Therefore instead of discussing each parameter 

individually the Reynolds number was investigated. Figure 26 shows the occurrence of complete 

evaporation with respect to the Reynolds number. As the Reynolds number increased the 

occurrence of incomplete evaporation decreased. Incomplete evaporation tended to occur at 

lower Reynolds number most likely due to the increased viscous forces. As the viscosity was 

larger the jet diameter was larger and took longer to evaporate. In addition to the flow 

characteristics as the voltage was increased the electric force applied to the droplet was increased 

and may influence how much material was being pulled towards the collector.  This may have 
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occurred by increasing the size of the jet or by increasing the number of jets being pulled from 

the droplet.  The molecular weight term may be significant because of this jet size dependence. 

 

Figure 26. The occurrence of complete evaporation with respect to the Reynolds number, 

each data point represents one sample. 
 

Also, the solution being pulled towards the collector would be dependent on the surface 

tension which was influenced by the solvent ratio which was another significant term. As the 

surface tension increased, incomplete evaporation tended to occur more frequently as shown in 

Figure 27. 
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Figure 27. The occurrence of complete evaporation with respect to the surface tension, each 

data point represents one sample. 

Figure 27 supports the theory that at lower surface tensions more solution is pulled toward the 

collector. The jets with more solution require longer times to evaporate. In addition to the 

solution properties, the voltage interacted with the depth of field. Increasing the voltage 

increased the jet size in some cases, but this affect was mitigated by increasing the depth of field 

which allowed more time for the jet to travel through the system. It should be noted that 

incomplete solvent evaporation may reduce the degree of molecular chain alignment. It was 

reported that chain  alignment was dependant on the evaporation time and the chain relaxation 

time; therefore, it is desirable to have high evaporation rates in order to maximize chain 

orientation [80]. Consequently, incomplete solvent evaporation could reduce the piezoelectric 

properties of the webs.  
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3.3.4 Logistic Regression Model for Bridging Dispenser to the Collector 

The logistic regression equation found for bridging likelihood is 

 
Bridging Likelihood =

1

 1 + e−Lin     No  Fiber  Bridge   
 (16) 

 

 Lin No Fiber Bridge 
= 27 + 2.7 (X3 + 1.1) + 3.1 ∗ 10−5  X1 + 32000 − 2.83 (X2

+ 15.9) + 0.30  X2  + 1.1 + 2.95 ∗ 10−5 X1X2 + 0.67 X2X6 

(17) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
 

If the likelihood value is close to 0 there will most likely not be bridging; if the probability is 

closer to 1 then most likely there will be bridging. Because the conductivity term is in Equation 

17, it is suggested that the conductivity of the solution influenced the occurrence of fiber 

bridging. This is most likely because as the conductivity increased the force on the jet increased. 

The increased number of charge carriers allowed the fiber to be pulled toward the dispenser.  

Once again the important terms in the model suggest that the viscosity and evporation 

rate were important as well.  Increasing the solution concentration decreased the liklihood of 

bridging, this is due to a decrease in the amont of solvent that needed to evaporated from the jet. 

The voltage which impacted the electric field provided and influenced the forces on the fiber. As 

soon as a fiber formed that did not deposit to the collector but was only fixed at one end. It 

became energetically favorable for the subsequent jet to deposoit on the protruding fiber. 
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3.4 Validating the Defect Free Range for Electrospinning 

The next step was to verify regression models were accurately predicting the occurrence 

of beading for the data collected. The R
2 

values were used to determine the goodness of fit. The 

R
2
 values for the models of the fiber beading, incomplete evaporation, electrospraying, and 

bridging were 0.93, 0.87, 0.79, and 0.71 respectively. One should note that this method was 

limited by the low occurrence of defects in some cases. For instance, there were eight cases of 

fiber bridging; therefore, only a few terms could be in the model without over fitting the 

available data. This may be one reason the goodness of fit was lower for fiber bridging.  

This method was able to identify parameters that were significant in this experiment and 

should be accounted for when producing PVDF fiber webs. Additional experiments could reveal 

that other parameters are significant, even ones investigated in this study; but, there was not 

enough evidence in this study to suggest they were influencing the occurrence of defects.  The 

high R
2
 value means that the variation was accounted for by the model parameters.   

Table 5 shows the number of correctly predicted values and incorrectly predicted values 

when the equations were applied to the defect occurrence data that was collected in this study.  

Table 5. Validation of defects models. 

Defect Type 
Number of Correctly 

Predicted Values 

Number of Incorrectly 

Predicted Values 

Number Not 

Observed 

Beading 134 3 12 

Incomplete Evaporation 131 10 16 

Electrospraying 131 5 14 

Bridging 148 3 4 

 

By creating a new model that is dependent on the findings from the four individual models, it is 

possible to create a comprehensive way to predict the occurrence of defects. 

This new model can be built by using logistical operators and the four logistic regression 

models. The new model works by inputting a single set of parameters or a matrix of parameters. 
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Then, each logistic regression equation is checked one by one for the occurrence of a defect. If 

no equation predicts a defect then the likelihood of a defect occurring during production is low. 

Using this approach, generated thousands of data points and identified new areas to explore for 

defect free fiber web production. But further experimentation is needed to explore the production 

space outside of what was investigated in this research.  

3.5 Production Guidelines 

While the regression equations are, a streamlined understanding would also be beneficial 

for understanding how each individual parameter influences all four defects. This was done by 

establishing guidelines based on the orthogonal regression coefficients. Each normalized 

coefficient was put into the following scale based on the following value of that ratio: 0 - 0.1 

very small, 0.10 - 0.35 small, 0.35 - 0.65 medium, 0.65 - 0.90 large, and 0.90 - 1.0 very large. A 

positive sign indicates a direct correlation, and a negative sign indicates an indirect correlation.  

The methodology is outlined in Table 6 for fiber beading.  

Table 6. Development of guidelines for fiber beading using the regression coefficients. 

Term 
Orthogonal Regression 

Coefficient 
Interpretation 

Normalized by 

Regression 

Coefficient 

Guideline Based on 

Normalized Value 

Solution 

Concentration 
24.1 

Increasing solution concentration 

increased the likelihood of beading. 
0.323 +Small (0.1-0.35) 

Solvent Ratio -50.0 
Increasing solvent ratio decreased 

the likelihood of beading. 
-0.669 -Large (0.65-0.9) 

Conductive 
Additive 

53.4 
Adding the conductive additive 

increased the likelihood of beading. 
0.716 +Large (0.65-0.9) 

Molecular Weight -74.5 
Increasing the molecular weight 

decreased the likelihood of beading. 
-1 -Very Large (0.9-1) 

Voltage 15.6 
Increasing voltage increased the 

likelihood of beading. 
0.21 +Small (0.1-0.35) 

Voltage · Needle 

Diameter 
15.7 

Increasing voltage and needle 
diameter at the same time increased 

the likelihood of beading. 
0.210 Small (0.1-0.35) 

 

Table 7 shows the guidelines developed for all significant parameters for all four defects. 

Parameter interactions that were not significant, such as the interaction between the pumping rate 
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and voltage, are not listed in the table. A dashed entry signifies that the parameter did not have a 

statistically significant impact in that category. 

Table 7. Guidelines for reducing defects for electrospun PVDF webs. 

Electrospinning Parameters  

Influence on Defect Likelihood 

Beading Electrospraying 
Incomplete 

Evaporation 
Bridging 

Solution Parameters  
  

Solution Concentration  +Small - - -Medium 

Solvent Ratio  -Large[6] -Small - - 

Molecular Weight  -Very Large[4] -Very Large +Very Large 
+Very 

Large 

Conductive Additive  +Large +Medium - +Large 

Processing Parameters  
  

Voltage  -Small - - - 

Depth of Field  - - -Medium -Small 

Pumping Rate  - +Medium* - - 

Needle Diameter  - - -Medium - 

Parameter Interactions  
  

Solution Concentration and Molecular 

Weight  
- -Small [11] - +Large 

Solution Concentration and Conductive 

Additive  
- -Medium [11] - - 

Solution Concentration and Depth of 

Field  
- - -Very Large - 

Solution Concentration and Voltage  - - +Medium -Small 

Solvent Ratio and Voltage  - - -Small - 

Molecular Weight and Depth of Field  - - -Medium - 

Voltage and Needle Diameter  -Small [10] - - - 

*Parameter includes the coefficient from the quadratic term. 

The guidelines with references next to them indicate that the finding was previously reported and 

supports the finding of this study. By using these guidelines, the influence of parameters on the 

likelihood of occurrence for multiple defects can be anticipated.  
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Chapter 4: Controlling the Structure of Fiber Webs 

4.1 Introduction to Controlling the Structure of Fiber Webs 

The control of defect occurrence was documented in Chapter 3, and, therefore, defects 

can be used to change the structure of fiber webs. In addition to defects, the structure of 

electrospun fibers was reported to influence the functionally of the PVDF fiber webs [40, 41, 

101, 105]. Therefore, the functional properties of electrospun PVDF webs can be controlled if 

the structure of the webs can be controlled. In addition to defects, there was also the structure of 

the fibers and beads in the web.  These were also important to control, Pham stated that the, 

“precise control of fiber morphology will be necessary for improved scaffold designs and better 

recreate the functions of native extracellular matrix” [40]. Also, the level of beading and the fiber 

diameter influenced the contact angle for fiber webs [41]. Likewise, the frequency of beading 

nodes was reported to affect the water collecting ability of biologically inspired fibers [105]. 

Beaded fibers were also suggested for photonic applications by utilizing nanoscale features 

[101].  But, because the majority of studies focused on the influence of web structure on the 

desired application, little is known on how to produce fiber webs with precise fiber and bead 

structures. 

Until now, the structure of PVDF fibers was investigated using trial and error methods or 

by using what was reported in the literature as a starting point. Then, if possible, a desired 

structure would be controlled by utilizing single parameter relationships. For instance, if a larger 

fiber diameter was needed, the solution concentration was increased over a couple settings. This 

was successfully only in cases where there were no defects which limited the production space. 
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This required a large amount of time spent finding a viable set of production parameters for each 

desired application. Only a few reports looked at controlling the structure of beads [82, 94] and 

they did not present any method for controlling the structure of fibers and beads at the same time. 

Also they did not consider any interactions between control parameters which limited the ability 

of the trends to a small production space. By understanding the influence of parameters on the 

average fiber diameter, average bead diameter, and the number of beads per area the systems 

understanding of the electrospinning process would be greatly enhanced.  

4.2 Experimental Setup 

A similar experimental setup and design was used to develop regression models in order 

to identify and quantify which electrospinning parameters would influence the web structure. 

There were not any changes made to the original electrospinning setup used previously and 

shown in Figure 17. The ranges of the solution parameters and processing parameters were 

expanded from the previous investigation, shown in Table 4, and the system parameters were 

added parameters and were listed in Table 8.  

Table 8. Electrospinning parameters and ranges explored for controlled web structure. 

Solution Parameters Lowest Setting Highest Setting 

Polymer Mw 180,000 g/mol 530,000 g/mol 

Solution Concentration 14 wt% 18 wt% 

Conductive Additive None 4.5 wt% TBAC 

Solvent Ratio  
0.5 to 9.5  

Acetone to DMF 

6.5 to 3.5 

Acetone to DMF 

Processing Parameters Lowest Setting Highest Setting 

Pumping Rate 0.5 µl/min 72.5 µl/min 

Voltage 12 kV 23 kV 

Needle Diameter 22 gauge 18 gauge 

Depth of Field 6 cm 32 cm 

System parameters Lowest Measured  Highest Measured 

Surface Tension 31.0 mN/m 41.3 mN/m 

Electric Field 2 kV/m 0.75 kV/m 

Reynolds Number 0.0002 2.2 

Electrospinning Current 0 µA 35 µA 
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The electrospinning solutions were prepared the same way as in Chapter 2. The solutions were 

tested to determine their viscosity and surface tension. Viscosity of the solutions was measured 

using a Fungilab Alpha R rotational viscometer. Surface tension measurements were made using 

a KSV Sigma 701 Tensiometer. For both the viscosity and the surface tension multiple 

measurements were taken to ensure a repeatable value. The viscosity and surface tension 

measurements can be found in Table 9. 

Table 9. Measurements of viscosity and surface tension for different solutions. 

Solution 

Concentration (wt%) 

Acetone to 

DMF Ratio 
TBAC (wt%) 

Molecular Weight 

(g/mol) 
Viscosity (cP) 

Surface Tension 

(mN/m)  

15  2 to 8 3  180,000 128 36.18  

15  1 to 1 3  180,000 461 41.32  

15  2 to 8 0  180,000 136 34.16  

15  1 to 1 0   180,000 118  38.84  

17  2 to 8 3  180,000 193  35.26  

17  1 to 1 3  180,000 15,066  37.25  

17  2 to 8 0  180,000 234  37.85 

17  1 to 1 0  180,000 5,324  39.32 

15  2 to 8 3  530,000 Out of Range 36.58 

15  1 to 1 3  530,000 13,127  31.98 

15  2 to 8 0  530,000 5,163  36.15 

15  1 to 1 0  530,000 7,341  31.60 

17  2 to 8 3  530,000 18,511  36.21 

17  1 to 1 3  530,000 140,821  31.01 

17  2 to 8 0  530,000 15,839  Out of Range 

17  1 to 1 0  530,000 44,359 Out of Range 

 

The viscosity was used to calculate the Reynolds number of the flow through the needle. It 

should be noted that this was different than the flow during travel from the dispenser to the 

collector that others have reported. The electric field was calculated from the voltage and depth 

of field settings. And the electrospinning current was measured across the power supply. 

 Before the data collection, it was important to establish repeatability and time 

independence of the web structures. Figure 28 shows different samples made under identical 

electrospinning solution parameters and processing parameters. The only controlled parameter 
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that differed was the electrospinning time. Sample A had an electrospinning time of 20 min with 

an average fiber diameter of 661 nm; sample B had an electrospinning time of 30 min with an 

average fiber diameter of 642 nm; and, sample C had an electrospinning time of 120 min and an 

average fiber diameter of 658 min. The average fiber diameter for each sample was close for 

each case, with standard deviation around 10nm, and therefore time was not considered to be an 

important variable. The low variance in fiber diameter over the 120 minutes suggested that time 

did not play a significant role in the electrospinning process. For this work, the majority of 

samples were spun between 10 min and 30 min.  

 
 

Figure 28. These SEM images show PVDF webs produced using the same electrospinning 

parameters for different deposition times. 
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4.3 Experimental Results 

The experimental setup and design produced over 184 PVDF fiber webs; 64 of these 

were replicates. Over 2000 SEM images were taken and used to measure over 18,000 fiber 

diameters and over 2,800 bead diameters. Figure 29 shows SEM images of two different samples 

and the distribution for fiber diameter and bead diameter of each sample.  

 
 

Figure 29. These SEM images show representative PVDF webs and show the average 

fiber diameter and average bead diameter distribution of the respective sample. 
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Figure 30 includes different samples produced using the experimental design with different fiber 

diameter, bead nodes per area, and bead diameters. 

 

Figure 30. These images were taken at the same magnification and show PVDF fibers with 

a wide range of fiber diameter, bead nodes per area, and bead diameters. 
 

The ranges measured for each metric are reported in Table 10. The wide ranges in each of the 

metrics indicated large variations in structure were attainable within the experimental design. 

Table 10. Ranges of measured web metrics. 

Metric Range 

Average Fiber Diameter 20 nm – 2400 nm 

Average Bead Diameter 0.23 µm – 16 µm 

Bead Nodes/mm
2
 0 – 4.96 x 10

6
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The parameter settings for the largest and smallest measured values of each metric are reported 

in Table 11.  

Table 11. Parameter settings for the largest and smallest measured values. 

Desired Property 

Solution 

Concentration 

(wt%) 

Solvent 

Ratio 

Conductive 

Additive 

(wt%) 

Molecular 

Weight 

(g/mol) 

Voltage 

(kV) 

Depth of 

Field 

(cm) 

Pumping 

Rate 

(5µl/min) 

Needle 

Diameter 

(mm) 

Lowest Fiber Diameter 15 2 to 8 0 180000 10 10 27 0.838 

Largest Fiber Diameter 17 1 to 1 0 530000 20 10 50 0.413 

Lowest Bead Diameter 15 1 to 1 0 180000 10 10 5 0.413 

Largest Bead Diameter 17 1 to 1 0 530000 20 15 5 0.413 

No Beading 17 1 to 1 0 530000 20 10 50 0.413 

Most Bead Nodes/Area 15 2 to 8 0 180000 10 10 5 0.413 

 

There were many samples with zero bead nodes per area, but only one is reported in Table 1 for 

brevity. With all the parameters that were changed during the experiment between different 

samples, it was not possible to know what was causing the change in structure without a 

regression analysis.  

4.4 Regression Models for Different Structures 

The next step was to determine which parameters were influencing the web structure. A 

statistical analysis was conducted in order to investigate the influence of each parameter and 

interaction on the three fiber metrics: average fiber diameter, average bead diameter, and the 

number of bead nodes per area. Three regression equations were built based on the statistical 

analysis. First the important model terms are discussed.  Then afterwards, the coefficients of the 

regression model were discussed.   

4.4.1 Regression Model for Fiber Diameter 

The regression equation for fiber diameter had an R
2
 value of 0.84 and an adjusted R

2 

value of 0.82. The regression equation is 
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 Fiber Diameter  nm 
=  −1400 + 1.08 ∗ 10−3  X1 + 32000 + 48.5 (X2 + 15.9)
+ 343 (X4 − 0.592) + 3.6 (X5 + 25.8) + 3.2 ∗ 10−5 X5

 X1
 

+  2.67 ∗ 10−4 X2X1 + 4.39 X5X4 + 1.84 ∗ 10−3 X4X1

+  35.6 X4X6 − 247  X4 
2 + 1.26 ∗ 10−8  X1 

2 

(18) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
 

Our findings supported previous observations that as molecular weight and solution 

concentration increased the fiber diameter increased. However, we found that as the relative 

amount of acetone increased in the solvent mixture the diameter of the fiber increased which was 

not in agreement with previous reports [64, 71].  

The addition of the conductive additive increased the fiber diameter. As an inorganic salt, 

this additive is expected to reduce the surface tension and increase conductivity. The reduction in 

surface tension may allow a larger jet to form, and as the solution conductivity increased the 

electrostatic force on the jet increased and may have caused an increase in the size of the 

electrospinning jet. As the pumping rate increased the fiber diameter increased. This was 

attributed to a change in the shape of the droplet at the dispensing tip. It was observed that as the 

pumping rate increased the size of the droplet increased at the end of the dispensing tip, and as 

the droplet increased at the tip of the needle a larger jet was formed. 

 It was visually observed that this parameter tried to achieve a stable equilibrium 

condition as small solution availability decreased the jet diameter, and more solution increased 

the size of the jet. This may provide some insight into why many researchers do not find the 
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pumping rate to be a significant parameter since, for the vast majority of pumping rates, the 

droplet size tended toward an equilibrium condition that reduced any impact of this parameter.  

The findings of this study did not support a significant impact of voltage on fiber 

diameter. One possible reason for this was reported in the literature [68]. This study said that the 

voltage was only a significant parameter in the nanofiber regime but not in the microfiber regime 

[68]. In order to investigate this, a set of parameters that produced a nanofiber sample was 

identified. Then, all parameters were held constant except the voltage. As shown in Figure 31, 

the voltage did tend to increase the average fiber diameter for these nanofiber webs.  

 
 

Figure 31. The figure shows the influence of voltage on fiber diameter for a single set of 

parameters that produced nanofiber webs. 

 

Figure 31 suggests that any future work on modeling the electrospinning system could be 

improved by exploring the differences in fiber production in the nanoscale regime.  

 In Figure 32 the fit of the regression equation is observed. The figure is a plot of the 

predicted average fiber diameter against the measured average fiber diameter. If the regression 

equation agrees with the model, then the data point will fall directly on the dashed line.  
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Figure 32. This figure shows the predicted average fiber diameter plotted against the 

measured average fiber diameter; each data point represents one sample. 

 

The regression equation was able to accurately predict the average fiber diameter within the 

experimental ranges used in this experiment since the majority of the points fall along the dashed 

line in Figure 32. Once again, the predicted average fiber diameter was plotted against the 

measured average fiber diameter, except, this time all the data points that were associated with 

fiber webs which contained defects were removed. Figure 33 shows that as the samples with 

defects were removed the regression fit increased; the R
2
 increased to 0.96.  
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Figure 33. This figure shows the predicted average fiber diameter plotted against the 

measured average fiber diameter; each data point represents one sample. 
 

Figure 33 suggests that if controlling the fiber diameter is desirable, defects should be avoided 

when using the regression equation.  

Another way to test the validity of the regression equation for predicting average fiber 

diameter would be to apply the equation to previously reported data and observe whether or not 

the regression model agrees with what was reported. This method would validate the regression 

equations use for other electrospinning systems and suggest that it is valid over a wide range of 

parameters settings. Three studies could be used to test the validity of the regression equation. 

The studies used to validate the model are summarized in Table 12. In order to use this method, 

it was assumed that the differences in procedure for solution preparation and web 

characterization would not significantly affect the measured metric. 
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Table 12. References used to validate fiber diameter regression equation. 

Study Reference 
Symbol for 

Data Point 
Assumed Values 

Parameters that were Outside of Ranges 

Intended for the Regression Equation. 

Nasir et. al. [20] + 1 Solution concentration 

Akbari et. al. [21] o 4 Solution concentration 

Essalhi et. al. [22] • 1 Pumping rate and depth of field 

 

Another problem with this approach was that of all the studies found for electrospinning PVDF, 

none were found that reported all four solution and all four processing parameters. Therefore, 

missing values were assumed to be a mid-range value. Appendix B shows all the values taken 

from the literature including the assumed values. Figure 34 shows the predicted average fiber 

diameter plotted against the measured average fiber diameter.  

 
 

Figure 34. This figure shows the predicted average fiber diameter against the measured 

average fiber diameter; each data point represents one sample. The regression model used 

was based on the model developed with the AIC method. 
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Figure 35 shows that the model developed was not effective at predicting the average fiber 

diameter outside of this study. One possible reason for this was that as the production range was 

expanded other terms may have been necessary to predict the average fiber diameter. In order to 

test this reason, the regression equation using all eight parameters and all parameter interactions 

was sued. This was done and the results are shown in Figure 35.  

 
 

Figure 35.  This figure shows the predicted average fiber diameter against the measured 

average fiber diameter, each data point represents one sample. The regression model used 

included terms for all the solution and processing parameters and interactions.  
 

The predicted values for one study were off, but in this study four values were assumed. 

Therefore, it is the least reliable data. By looking at the measured values and the predicted values 

of the other two studies, in Figure 35, the increase in predictability can be observed. Therefore, 
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when controlling the fiber diameter outside of the ranges investigated in this study it is beneficial 

to use the model with all parameters and interactions. The terms of this model t are in Appendix 

A.5. One or more of the assumptions made could be reducing the power of the regression 

equations since the model was not as accurate as the previous fit using data from this study. 

Since the regression model with all the terms was more accurate, other terms, possibly the 

solution concentration and solution concentration interactions, were important but were not 

noticeable until the tested range was increased. This does not negate the usefulness of the 

regression model, but confines the use of the model developed using the AIC method to a certain 

production space. Just because a parameter was not statistically significant in this study does not 

mean it is not important. It means there was not enough evidence to reject the null hypothesis, 

and, therefore, it was not included. The high fit for the previously reported data suggested that 

many of the parameters were important, and more data collection can be done on these 

parameters to determine exactly which other parameters and interactions were important.  

4.4.2 Regression Model for Bead Diameter 

The regression model for bead diameter had an R
2
 value of 0.87 and an adjusted R

2 
value 

of 0.85. The regression equation is 

 Bead Diameter  m 
= −3.71 + 1.46 (X4+0.592) + 0.0345 (X5

+ 25.8) + 0.178 (X6 + 17.3) − 0.0687 X2X5 + 1.48 ∗ (X1)2   
+ 2.02 ∗ 10−5 X1X4 + 7.5 ∗ 10−2 X6X8 

(19) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
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Increased acetone to DMF ratio increased bead diameter; this was attributed to higher 

surface tension of solutions with the higher solvent ratios. This is supported by Table 9 which 

shows that high solvent ratios had higher surface tensions. The pumping rate impacted the bead 

diameter; this was attributed to influences on jet diameter and possibly the perturbation 

frequency. Voltage increased bead diameter, why this parameter influenced the bead structure is 

not clear. The interaction between the depth of field and voltage was a result of increasing the 

electric field and the travel time of the jet. As the electric field increased; the charging of the jet 

increased; and a longer travel time of the jet allowed larger beads to form. Figure 36 plots the 

predicted average bead diameter against the measured average bead diameter. 

 

Figure 36. This figure shows the predicted average bead diameter plotted against the 

measured average bead diameter; each data point represents one sample 

 

Validating the regression equation for average bead diameter with other studies was not possible 

because no other studies previously reported the average bead diameter for electrospun PVDF 

fiber webs.  
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4.4.3 Regression Model for Bead Nodes per Area 

The regression model for bead nodes per millimeter squared had an R
2
 value of 0.50 and 

an adjusted R
2 

value of 0.46. The low value of the fit suggests that there were other variables that 

were not accounted for, perhaps electrospinning time. As the electrospinning time increased the 

number of beads into the web would increase, the influence of the time would be dependent on 

the penetration depth of the electron beam into the sample. This possibility should be explored 

further in order to determine a consistent method for measuring the number of bead nodes per 

area. Nonetheless, the terms of the model were still useful for understanding the influence of the 

significant parameters on the number of beads in the web.   

 Number of Bead Nodes per 12,000 m2

= 1597 − 0.0025(X1 + 32000) − 627  X4 + 0.592 
+ 800X2X4  + 0.005X1X4 + 469X6X7 + 0.0009X1X2

+ 16.8(X6)2   

(20) 

 

X1  =  Polymer Mw −  320000 g/mol 
X2  =  Solution Concentration (wt%) − 15.9 wt% 
X3  =  Conductive Additive (wt%) − 1.1 wt%  

X4  =  Solvent Volume Ratio (VAcetone /VDMF ) −  0.592 

X5  =  Pumping Rate ( l/min)  − 25.8 l/min 
X6  =  Voltage  kV −  17.3 kV 
X7  =  Needle Diameter  mm −  0.62 mm  
X8  =  Depth of Field  cm − 14.5 cm   
 

The reasons for reduced beading due to increased solution concentration and molecular 

weight were previsouly mentioned in the background and were in agreement with the terms of 

this regression model. The effect of the needle diameter and the voltage may be a result of the 

charging phenomena at the tip of the needle. The interaction between the needle diameter and the 

depth of field was not expected and could be because this term is coupled with an important third 

level interaction. This interaction is the least signifcant term, and its effect on the number of bead 

nodes per area was relatively small compared to the other terms of the model. Futher data would 
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need to be collected in order to understand if this term is influencing the level of fiber beading, 

or if it is a higher level interaction term. Figure 37 shows the predicted number of bead nodes per 

area plotted against the measured number of bead nodes per area. The area size chosen, 12,000 

µm
2
, was based on the most commonly investigated area of the SEM images. This number of 

bead nodes can be scaled to any area size and is, therefore, arbitrary in most cases.  

 

Figure 37. This figure shows the predicted number of bead nodes per area against the 

measured number of bead nodes; each data point represents one sample. 

 

From Figure 37 it is clear that this regression model was not as powerful as the other 

models. Nonetheless, the effects of the significant model parameters still provided significant 

insight into key parameters that can be used to influence the number of bead nodes per area. The 

lack of fit may be due to the smaller sample size for this metric. Many samples were not 

sufficiently thick to get a true count and were, therefore, left out of the analysis. Figure 38 shows 
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two samples. The first SEM image shows a fiber web sample where the number of beads per area 

could be counted. The second SEM image shows a sample that had beads but did not have a 

sufficient amount of material to get an accurate count, and, therefore, this data point was 

missing. The reduction in sample size reduces the ability of the CCD design to be effectively 

used and, therefore can reduce goodness of fit for the regression model. 

  
 

Figure 38. The images show two different PVDF fiber web samples. The sample on the 

right shows a sample with sufficient fibers to count the number of beads. The sample on 

the left shows a sample without sufficient material to count the number of beads. 
 

By repeating the experiment with longer electrospinning times, often over many hours, 

increasing the sample size and discovering new statistically significant parameters may be 

possible. When all parameters were included in the regression model, regardless of their 

statistical significance, the model‟s R
2
 value increased. Using all parameters and interactions, the 

R
2
 value was increased to 0.84 and, and an adjusted R

2 
value of 0.65. This suggests that there is 

potential for increasing the goodness of fit but the increase in R
2
 value may also be due to over 

fitting. Validating the regression equation for the number of bead nodes per area with other 

studies was not possible because no other studies previously reported the number of bead nodes 

per area for electrospun PVDF fibers.  
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4.5 System Diagram 

Once the regression equations were known, the next step was to understand how each 

parameter influenced the entire web structure, since it was desirable to control all aspects of the 

structure during the electrospinning process. The individual regression models only provide 

information on one metric at a time. Having a web with an average fiber diameter of 20 nm, an 

average bead diameter of 20 µm, and 100 bead nodes per mm
2
 may be desired but this structure 

may not be possible. A desirability study can be used to determine if this is possible according to 

the regression equation. This can be done using a computer based method due to the high 

computational requirements and can be done using the JMP SAS© [106]. Even if theoretically 

possible, the required parameter settings may not be possible or may be so far outside the 

investigated range that the model is no longer accurate. 

The regression models were useful in understanding what terms are important and the 

influence of those parameters, but by themselves they do not provide a systematic understanding. 

In order to have a systematic understanding of the influence of the parameters on the web 

metrics, a system model diagram was used. The system model diagram was built by using a 

similar methodology, found in Table 6, for developing the production guidelines for defect free 

fibers. The significant relationships found from the important terms of the regression equation 

were used, and the coefficients of each term revealed the type of relationship and the magnitude 

of the influence. The size of the parameter effect was based on the normalized coefficients of the 

regression model found in Appendix A. Figure 39 shows the system diagram which is useful to 

observe the possible tradeoffs of changing parameters. For instance, if the molecular weight is 

increased, one would expect that the average fiber diameter increases, the average bead diameter 

increases, and the number of bead nodes per area decreases.  
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Figure 39. A schematic of the influence of solution and processing parameters on web 

metrics. 
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Figure 39 clearly shows that there are complex tradeoffs between controlling different metrics, 

similar to the tradeoff observed with defects. The dominant parameter is the molecular weight 

which had the largest influence on all three metrics, and many significant interactions include the 

molecular weight. 

 Figure 39 uses the linear relationships of each parameter. For a more complete 

understanding of the curvature of certain parameter effects, the equations listed in the previous 

sections should be used, or the values found in Appendix A. So far this analysis was limited to 

solution parameters and processing parameters, but the system parameters were also 

investigated.  

4.6 System Parameters 

The system parameters investigated in this experiment include the Reynolds number, 

surface tension, electrospinning current, and the electric field. A regression model based on 

system parameters was desirable for three reasons. First, it could reduce the number of terms 

used in the predictive model, thereby simplify what needs to be controlled. Second, the system 

parameters could serve as process monitoring parameters, since many of the parameters can be 

monitored during the electrospinning process. Third, system parameters may hold the potential 

for application to a wider range of electrospinning systems and polymer solvent combinations. 

However, for the most part, the system parameters were not as directly controllable as the 

solution and processing parameters.  

The system parameters were controlled by changing the solution parameters and the 

processing parameters. However, often they were also dependent on the environmental 

conditions. The first step was to understand how the controllable solution and processing 

parameters influenced the system parameters. The influence of each solution and processing 
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parameters on the electrospinning current and surface tension was established using measured 

data. The influence of parameters on the electric field was based on the equation for a uniform 

electric field. The influence of parameters on the Reynolds number was based on measured data 

for viscosity and the equation of the Reynolds number. Then, the next step was to determine how 

the system parameters influenced the web metrics.  

Using the same method as before, regression equations were developed for each metric. 

The results of the statistical analysis can be found in Appendix A. Using only system parameters 

and their interactions, the R
2
 values for the models of the fiber diameter, bead diameter, and the 

number of bead nodes per area was 0.40, 0.24, and 0.72, respectively. Clearly, the large 

reduction in R
2
 values for two out of the three regression equations suggests that using the 

system parameters was a poor substitute for the regression models that used solution and 

processing parameters. Although, in the case of the number of bead nodes per area, a large 

increase in R
2
 value suggested that this was a better pathway for controlling the number of beads 

in the web. Because of the low R
2
 values, the equations were not included in this discussion but 

can be built using the terms documented in Appendix A.  

Even though the regression equations did not have a high R
2
 value, the significance of the 

parameters and the coefficients of the model were still useful since, previously, there was not a 

systematic understanding of how the solution and processing parameters related to the system 

parameters and how the system parameters influenced the structure of PVDF fiber webs. Figure 

40 shows the system diagram of solution parameters, processing parameters, system parameters, 

interactions, and metrics. As previously noted, the size and sign of the influence of the effect was 

based on the normalized coefficient of the regression model. This figure can be used to 

determine different pathways for influencing system parameters and metrics.  
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Figure 40. A schematic of the influence of solution and processing parameters on system 

parameters and the influence of system parameters on web metrics. 
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One of the most significant findings of this analysis was the statistical significance of the 

Reynolds number. While many researchers discussed the significance of the Reynolds number, it 

was in reference to the Reynolds number of the jet after it exited the syringe and was being 

pulled toward the collector [61, 62]. However, this analysis showed the influence of the 

Reynolds number as calculated from the pipe flow characteristics that occurred in the needle. In 

addition to finding the significance of the Reynolds number, the influence of surface tension, the 

electrospinning current, and the electric field on the bead metrics is a substantial contribution to 

the fundamental understanding of the electrospinning process.  

Two methods were used so far ‒ one using only solution parameters, processing 

parameters, and the interactions; and one using only system parameters and the interaction of 

system parameters. However, it was also possible to use a hybrid regression equation that 

utilized terms from all of the parameters. The difficulty in doing this from a statistical standpoint 

was that the sample size was small for an eleven parameter model with interactions. Using 

additional parameters always increased the model fit, which does not tell us much since this is 

expected. But by using the AIC method, the Reynolds number in combination with solution 

parameters and processing parameters in the regression model for the average fiber diameter 

increased the model fit significantly. In this case, the model R
2
 value increased to 0.92. 

Therefore, it was possible to further increase the fit of the model by knowing the viscosity of the 

solution, which is used to find the Reynolds number, in addition to all of the processing and 

solution parameters. This was the only case where the addition of a system parameter increased 

the goodness of fit in a statistically significant way.  
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Chapter 5: Influence of Web Structure on Porosity 

5.1 Introduction to the Influence of Web Structure on Porosity 

The literature was clear that one way to control the functional properties of fiber webs 

was by controlling the porosity [39, 41, 107-110]. For example, the performance of desalination 

filtration membranes was impacted by PVDF fiber web thickness, interfiber spacing, and by the 

porosity. For desalination, it was reported that webs with high porosity and high interfiber 

spacing was desired [38]. Another study reported that the porosity influenced the mechanical 

properties and biological properties of fiber webs [108]. Lower porosities had higher tensile 

strengths, but higher porosities had increased cell proliferation and infiltration. A similar report 

stated that decreased porosity contributed to more interconnected fibers increasing the 

mechanical strength of the web [110]. The applications of porous PVDF fiber webs included 

antibacterial membranes [15], protein absorbers [16], bone growth stimulators [17], tissue 

scaffolds [18],  and ultra-filtration membranes [26, 27].  Therefore, by controlling the porosity, 

the properties of the web could be controlled and used for a wide variety of applications.  

Attempts to control web porosity focused on the effects of fiber diameter. Theoretical 

calculations performed by Eichorn and Sampson [39] noted an almost linear relationship 

between increasing fiber diameter and increased pore space [39]. As the mean pore size 

increased, the porosity increased [39]. Eichorn and Sampson were able to model electrospun 

fibers as solid straight rods and concluded that the width, length, linear density, and cross 

sectional area were important parameters for controlling pore size [39]. The pore space within 

electrospun fiber webs were typically complex, but treating the web as a two dimensional 
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network of pores was helpful. This two dimensional approach was used before and treated pores 

as the polygons created by intersecting fibers [111]. Figure 41 shows a layer of PVDF fibers that 

created multiple polygons of different pore sizes. 

 
 

Figure 41. An example of the pores formed by PVDF fibers that validates the use of the 

polygon model approach. 
 

The work presented by Eichorn and Sampson [39] was critical in establishing a 

fundamental understanding of how the porous structure of electrospun fiber webs affected cell 

culture and mechanical strength. In this study, the web structure was reported to influence the 

porosity. The theoretical model, developed by Eichorn and Sampson, was for defect free fibers. 

As shown earlier there were many defects that can occur within fiber webs, and, yet, there was 

little known about how these structures influence the porosity of webs. Therefore, understanding 
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the influence of defects on web porosity was important. If defects did influence the web 

structure, this would provide a new technique for controlling the porosity of electrospun webs. 

The web structure is influence by the average fiber diameter, average bead diameter, number of 

beads per area, and the occurrence of incomplete evaporation. Therefore, the influence of each of 

these structures on web porosity needed to be investigated. 

5.1.1 Electrospinning Setup and Materials 

The experimental setup, materials, solution preparation, sample characterization, and 

statistical analysis were the same as outlined in previous sections. The sample size was much 

smaller in this study because many samples were too thin to accurately measure the porosity. A 

total of 21 samples were thick enough to get accurate porosity measurements.  

5.1.2 Pore Size and Pore Area 

The pore size, or interfiber spacing, was a difficult property to measure due to the often 

subjective nature of where a pore starts and stops. In a few samples, it was clear, and this was 

done by measuring the distance from one side of the polygon to the other side of the pore created 

between fibers. But in general, this was a difficult parameter to measure because the electrospun 

fibers were not packed together in an organized way but were interconnected and often twisted in 

a complex way around one another. In this research, a digital image processing method was used 

for measuring the total area of pore space. This was different than an average pore size. The 

main difference was that the fraction of the pore space was related to how the fibers were packed 

together. 

The analysis of the pore space at different levels of the web was previously done by 

utilizing different thresholds of a grayscale image [112]. As the depth of the impending electrons 

increased, the number of electrons that left the web was reduced, consequently reducing the 
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signal. The effect of different threshold values was already documented and related to the 

characterization thickness of the web [112]. The image analysis for this research was done using 

Image J software. First, the image grayscale threshold was adjusted to exclude anything above 

three quarters of the mean grayscale value. Then the image was converted into a black and white 

image. Next the area fraction of the black space was calculated; the information bar at the bottom 

of the image was not included in the measurement. A sample of the original images and the 

processed images are shown in Figure 42. 

 

 

Figure 42. SEM images at different magnifications converted to black and white images. 
 

Figure 42 shows the digital image processing of the SEM image of the same sample under two 

different magnifications. Sample A is at a magnification of 1000x, and the digitally processed 

image is sample B. Image C was taken at a magnification of 5000x, and the digitally processed 
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image shown is sample D. The percent area fraction calculated for images B and D was 27.8 and 

27.7, respectively. Therefore, the area fraction of pore space calculation was repeatable even 

under different magnifications.  

 The advantage of using this method was that it provided a measurable parameter that 

was related to the packing of fibers in the web. Replicated samples were produced, and the 

measurements showed high repeatability for different samples made under the same 

electrospinning parameters. In addition, this method showed high repeatability for the same 

sample at different magnifications and between images of the same magnification. However, if 

the image magnification was set very high (around 100,000x) or set very low (around 100x) the 

repeatability of the measurement decreased. 

 To ensure that the data was valid, multiple images of the same sample were analyzed to 

ensure a consistent measurement and to establish an average value. There were only a couple of 

studies in the literature that used this technique; therefore, it was important to test the 

relationship between interfiber spacing and the percent area of pore space for webs. This 

relationship would need to be based on images under similar magnification in order to be valid. 

This was done for four different defect free fibers with similar fiber diameters near one 

micrometer, under the same magnification.  Figure 43 shows an almost linear relationship 

between the percent area of pore space and the interfiber spacing and it validates this approach 

when the scale of the picture is taken into consideration. The use of the area fraction of pore 

space to estimate pore size may have applications for quality control in industrial scale 

production of electrospun fibers if this property can be continuously monitored during 

production.  
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Figure 43. Interfiber spacing plotted against area of pore space for defect free fiber webs; 

the area of pore space was calculated from SEM images of similar scale. 
 

5.1.3 Fiber Web Porosity 

The web porosity was calculated using a gravimetric approach. The porosity of the web 

can be expressed as  

 
Web Porosity = 1 −  

ρ
appearent

ρ
bulk

 Equation 21 

  

This method was well established for measuring porosity and was used for measuring the  
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porosity of electrospun fibers before [113, 114]. One study also noted that a mercury porosimeter 

was not effective at measuring porosity because the high pressure altered the size of the pores 

[112]. The bulk density was a property of the material, and the apparent density was measured 

using a micrometer, digital calipers, and a microgram scale. The main limitation to this method 

was that a sufficiently thick membrane was needed in order to get an accurate measurement. This 

study looked at the web porosity and not the porosity of the fibers themselves. There were 

studies that reported porous fibers [115], but that was not in the scope of this study. 

5.2 Results 

As mentioned earlier, 21 unique samples were produced, each with a different web 

structure. The web metrics and ranges are listed in Table 10. 

Table 13. Measured metrics and ranges for porous webs measured in this study. 

Metric Approximate Range 

Average Fiber Diameter 45 nm to 2400 nm 

Average Bead Diameter 230 nm to 17,000 nm 

Bead Nodes/12,000µm
2
 0 – 3,000 

 

The porosities ranged from 0.61 to 0.99, with the majority of porosities falling between 0.7 and 

0.95. Therefore, the different web structures did result in a wide range of possible web porosities. 

Figure 44 shows three SEM images of PVDF fibers that illustrate the three types of common 

structures possible. By looking at the data collected and SEM images there was a clear 

relationship between the different types of structures and the measured web porosities. In Figure 

44, image A shows a microfiber PVDF web without defects; image B shows PVDF microfibers 

with incomplete solvent evaporation; image C shows PVDF nanofibers with beads. The 

following sections will discuss the effects of each different web category separately.  
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Figure 44. Fiber webs with different morphologies that were investigated to explore the 

influence of structure on porosity. 
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5.2.1 Porosity of Fiber Webs without Defects 

This study looked at four samples without any defects in order to verify what was 

previously stated with regards to the influence of fiber diameter and pore space on the porosity. 

In general, increasing the area of pore space was expected to increase the porosity; this was 

observed, and the relationship is shown in Figure 45.  

 

Figure 45. Area of pore space plotted with porosity. 
 

The influence of the fiber diameter on the web porosity was also observed and is shown 

in Figure 46. As expected, increasing the fiber diameter increased the porosity. 

 

Figure 46. Fiber diameter plotted with porosity. 
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In both Figure 45 and Figure 46 the trend was not completely linear.  Figure 47 shows the 

regression fit using both the fiber diameter and the percent area of pore space.  Figure 47 clearly 

shows that the fit was accurate and that the area of pore space and the average fiber diameter 

influence the porosity in fiber webs without defects, as expected from the previously mentioned 

literature.  

 
Figure 47. Predicted and measured porosity of defect free fibers. 

 

The R
2
 value of the regression model was found to be 0.99. The limited sample size 

limits this analysis and may be a reason for the high R
2
 value, but this was only done to confirm 

what was already established, in the literature and the research agrees with what was previously 

reported. When only the fiber diameter was used in the regression equation, the fit was still high 

with an R
2
 value of 0.84. This suggested that the fiber diameter was the more important route for 

controlling the porosity and that knowing the pore size can enhance the accuracy of the model. 

This analysis was limited to fiber webs without defects.  
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5.2.2 Porosity of Webs with Incomplete Solvent Evaporation 

There were eight samples measured that had incomplete evaporation. Figure 48 shows 

the deformed fiber geometry that fibers have when not all of the solvent evaporates from the jet 

as it travels from the dispenser to the collector, during the electrospinning process.  

 

Figure 48. Fiber web with incomplete evaporation that shows the fibers fill in the pore 

space. 
 

The same relationships concerning the fiber diameter and the percent area of pore space were 

expected for fiber webs with incomplete evaporation. The main difference observed was that as 

the fiber diameter increased, the degree of flattening of the fiber increased. In addition, as shown 

in Figure 48, larger fibers often absorbed smaller fibers that were deposited on top. This allowed 

the fibers to be packed into a smaller volume. The fiber webs with incomplete evaporation 
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accounted for the lowest measured porosities with the lowest measured porosity being 

approximately 0.6. A plot of the average fiber diameter did not show any apparent trends; nor did 

the area of pore space as shown in Figure 49 and Figure 50. 

 
 

Figure 49. Average fiber diameter and porosity. 
 

 

Figure 50. Area of pores and porosity. 
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The regression analysis showed that when both the area of pore space and the fiber diameter 

were taken into account, there was a correlation. The predicted values plotted against the 

measured values are shown in Figure 51. 

 

 

Figure 51. Regression fit for fiber webs with incomplete solvent evaporation. 
 

A perfect fit would have all of the data points along the dotted line. Data points above the 

dotted line suggest the predicted porosity values are underestimating the value, and data points 

below the line suggest the predicted values are overestimating the value of the porosity. The 

good fit of the regression equation showed that when the average fiber diameter and the area 

fraction of pore space are taken into account, a trend was observable. The coeficients of the 

model terms for the area fraction of pore space and the average fiber diameter are called 

estimates and the statistical results of the analysis are listed in Table 14. 
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Table 14. ANOVA for porosity with incomplete solvent evaporation. 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.347 0.0864 4.02 0.0159 

Area Fraction of Pore Space 0.0134 0.00274 4.89 0.0081 

Area of Fraction Pore Space x Fiber Diameter -0.000016 3.56e-6 -4.49 0.0109 

 

Table 14 showed that, as before, increased area of pore space increased porosity. But, instead of 

just looking at the fiber diameter, the fiber diameter and the pore space interaction was 

significant. This was because the interaction was a more significant term than just the fiber 

diameter alone. The interaction was significant because it captured what was going on with the 

filled pore space. As the fiber diameter increased and the area of pore space increased, this 

reduced porosity. This term may be accounting for the absorption of smaller fibers into larger 

fibers shown in Figure 48. Using the area of pore space and the interaction, the R
2 

value of the 

regression fit of the observed data was 0.87.  

5.2.3 Porosity of Webs with Beading 

Figure 52 shows an image of fibers and beads on an aluminum substrate. The image 

shows how fibers and beads stack on top of one another. 

 
 

Figure 52. Image of PVDF fibers with beads. 
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Figure 52 pictures at least five different scenarios illustrating the complexity of how 

fibers and beads can impact the web structure. Number 1 shows fibers stacking on fibers. 

Number 2 shows fibers stacking on a single bead. Number 3 shows an example of a fiber 

forming a bridge over two beads. Number 4 shows a bead stacked on another bead. Lastly, 

Number 5 shows that large variance is possible between bead diameters. 

In comparison to webs with just fibers, the number of fibers per volume was decreased 

due to beading. The magnitude of the decrease was dependent on the frequency with which the 

five previously listed scenarios occurred. The frequency depends on the amount of beads per 

volume. The amount of beads per volume was related to the observed number of beads per area.   

This study investigated a way to predict the porosity in terms of the fiber and bead 

structure and the number of beads.  The developed conceptual framework suggested that the 

fiber diameter, area fraction of pore space, bead diameter, and number of bead nodes are 

important parameters. The complexity of how beads and fibers interacted with themselves and 

each other suggested that the interactions of these parameters could be of interest as well. The 

model framework so far ignored the effects of variance in mean values. But the variance, or 

standard deviation, of the mean values may affect the degree of packing possible for the fibers 

and beads. Therefore, the standard deviation of the average fiber diameter and average bead 

diameter was included in the analysis. This study produced a total of ten samples with beaded 

fibers.  

The regression analysis revealed which parameters were significant and the influence of 

each parameter. The summary of the statistical analysis is shown in Table 15. Table 15 shows 

that increasing the fiber diameter increased the porosity. 
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Table 15. Analysis of variance for beaded fiber webs. 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 2.66 0.496 5.37 0.0126 

Average Fiber Diameter 0.000577 0.000429 1.35 0.2711 

Number of Bead Nodes / Area 0.000761 0.000293 2.60 0.0802 

Average Bead Diameter (um) 0.606 0.190 3.19 0.0498 

Standard Deviation of the Bead Diameter -1.04 0.290 -3.60 0.0369 

Area Fraction of Pore Space -0.0603 0.0170 -3.55 0.0382 

(Number Bead Nodes / Area) • (Average Bead Diameter) 0.000533 0.000178 3.00 0.0577 

 

One possible explanation for this is that as the fiber diameter increased, the stiffness of the fibers 

increased. This explanation is reinforced by the appearance of small fibers in comparison to large 

fibers behave in Figure 53. The larger fibers appeared to stay straighter than the smaller fibers 

which appear less stiff.  

 

Figure 53. PVDF fibers with different diameters on a bead. 
 

This would be an important property if the beads are acting like the nodes of a scaffold. 

Therefore, as the thicker fibers provided stiffer connecting fibers for the nodes and created a web 

structure with high amounts of void pace, it would have increased the porosity. The influence of 

the fraction of pore space was different than previously observed for webs without defect. For 
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beaded fiber webs, increasing the area fraction of pore space decreased the porosity. The area 

fraction in this case was no longer dependant solely on interfiber spacing but was now also 

dependant on the bead diameter and the number of beads per area. The influence of this 

parameter on the porosity is counterintuitive. The decrease in pore space may indicate a high 

level of beading, and increased amounts of bead stacking and scaffolding phenomenon would 

increase the porosity. An image showing this scaffolding is shown in Figure 54.  

 

Figure 54. Image showing scaffolding phenomena of fibers and beads. 
 

This idea was reinforced by finding that an increased number of beads per area increased 

the porosity. Using the conceptual framework developed in this study suggests a limit at which 

the influence of beading on porosity would reach a maximum value and eventually cause the 

porosity to decrease as the number of beads increases. Increased standard deviation decreased 

porosity; as the standard deviation increased the possibility of packing additional material into 

the pores was possible. The number of beads per area and the average bead diameter is the one 
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important interaction identified as significant. This term suggests the importance of fiber 

diameter in relationship to the number of bead nodes. If, for instance, both of these values are 

increased, this term increased. This term could be accounting for a variety of relationships 

identified in Figure 4. A plot of the predicted and measured porosity values is shown in Figure 

55. 

 

Figure 55. Predicted and measured porosity of fiber webs with beads. 
 

Table 15 shows the statistical analysis of beaded fibers and the coefficient of each term in the 

regression model, found in the estimate column. The linear regression model had an R
2
 value of 

0.91. Therefore, this model shows that are many terms needed to predict the porosity in fiber 

webs with beading. There were three samples that were not included in the analysis since these 

samples had beads with incomplete evaporation. The morphologies are shown in Figure 56 and 

do not fall into one of the three distinct categories in this study.   
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Figure 56. Images of outliers. 
 

The regression equations suggest that the porosity of fiber webs can be tailored by 

controlling the average fiber diameter, area of pore space, average bead diameter, number of 

beads per area, standard deviation of bead diameter, and occurrence of incomplete evaporation. 

Different web structures required different regression models, but in general the trends of each 

parameter on the porosity were similar. The high R
2 

value for the regression equations indicated 

that the terms identified and the effects quantified for modeling porosity of fiber webs were 

accurate.  
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  Increasing the fiber diameter increased porosity except when incomplete evaporation was 

present in the web. Therefore, if producing a web with large fiber diameters and low porosities is 

desired settings that result in incomplete evaporation may be necessary. Also, if nanofiber webs 

are desired with high porosities, utilizing beading in order to increase the web porosity may be 

necessary. Therefore, defects can be used to influence the web porosity and in many cases may 

be beneficial depending on the desired fiber diameter and porosity. This research showed that by 

controlling the defects of fiber webs, one can also control the porosity. This was a new approach 

to controlling porosity of fiber webs. 
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 Chapter 6: Piezoelectric Response of PVDF Webs 

In the literature, the fiber diameter and fiber alignment were reported to influence the 

piezoelectric response [13, 17, 24, 33, 47, 54]. One study suggested that the optimized web 

processing conditions occurred at 30 kV with a pumping rate of 1ml/hr, needle diameter of 200 

um, depth of field of 6 cm, and a rotating collector with 16 m/s face velocity [55]. The average 

porosity of these webs was approximately 65%, with an average fiber diameter of 260 nm, and 

average thickness from 10-40 um, and a piezoelectric response ranging from  0.41 to 0.79 mV/Pa 

[55].  

While the influence of fiber diameter and fiber alignment was reported, influence of 

defects and bead structure was unknown. This study attempted to investigate the influence of 

defects and bead structure on the piezoelectric performance of fiber webs. In order to answer this 

question a reliable way to measure the piezoelectric performance of fiber webs was needed. One 

method found in the literature [36, 55, 116] that was used to estimate piezoelectric performance 

was by measuring and comparing the size of the diffraction peaks of XRD data of different 

PVDF samples to determine the degree of beta phase crystallinity. 

6.1 Method for Characterizing Crystallinity 

XRD was used to quantify the degree of alignment and crystallinity for PVDF fiber webs. 

Figure 57 shows XRD data from thin films purchased from PiezoTech© and XRD data of PVDF 

fibers created in the lab for this study. The piezoelectric beta phase peak occurs at 20° [24, 59, 

117]. In this research, an Xpert Pro Diffractometer (Philips) was used to characterize the 
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crystalline phase. The voltage and current, of the diffractometer, were set at 45 kV and 40 mA, 

respectively. In most cases the samples were scanned over a 2-theta range of 10 – 35°.  

 

Figure 57. XRD data for purchased thin films and produced fiber webs. 

 

The poled film was expected to have a peak around 20.5 degrees due to the high beta phase 

content which has the strongest piezoelectric response. It was noted that in some cases, for 

electrospun fiber web, the peaks shifted to the left [116] and could cause difficulty in 

distinguishing the alpha and beta phase peaks. Therefore, this technique was not used to compare 

different web performances but was used to verify whether or not the beta phase crystallinity was 

present in the webs with micro fiber and nanofiber. The stretched film showed alpha phase and 

beta phase peaks. The major alpha peak is around 19.9° in addition to the beta peak; the beta 

peak was present because this film was stretched. Stretched films were reported to contain both 



www.manaraa.com

105 

 

alpha and beta phase crystallinity [118]. The PVDF microfiber web had a broader peak with 

some evidence of the beta phase at 20.5° degrees, while the XRD output for the nanofiber web 

showed a broad and ill-defined peak at approximately 17°.   

The reasons for peak broadening were unknown, but when comparing XRD peaks in 

Figure 57 the XRD peak of fiber webs are not as well defined as those of thin film samples and 

suggest that the fiber orientation, porosity, or surface roughness of webs may be causing the 

XRD results to differ from thin film results. In order for XRD to be a viable route for comparing 

different PVDF webs, these results needed to be connected to an observed piezoelectric 

response. Therefore, in addition to measuring the crystallinity, it was important to compare the 

voltage response of different fiber webs.  

6.2 Method for Testing Piezoelectric Performance 

In the literature, PVDF fiber web performance was measured by comparing the voltage 

response of webs under a given pressure and/or displacement [21]. When the voltage was 

measured across the piezoelectric webs, understanding the effects of contact placement was 

important [10, 14, 119]. This study looked at measuring and comparing the piezoelectric 

response through the thickness of the web because it was possible to replicate the same device. 

The device was fabricated using two copper plates with conductive silver adhesive that were 

used to create contacts for the fiber webs. Then, wires were bonded to the copper plates in order 

to measure the voltage.  A schematic of the structure of the device and a measured voltage 

response is shown in Figure 58. In addition to the device shown in Figure 58, an interdigitated 

electrode setup was used to measure the response through the length of fiber web, but the 

fabrication of the device was difficult to replicate. A voltage response was observed in both types 

of device.   
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Figure 58. PVDF device and voltage response during one compression cycle. 
 

The same device shown in Figure 58 was fabricated using a commercially purchased 

poled PVDF thin film and non-poled PVDF thin film from PiezoTech©. The poled thin film 

showed a high voltage response, while the non-poled film showed no voltage response. The non-

poled film did have the piezoelectric beta phase but showed voltage response; this was most 

likely due to the low level of alignment of the beta phase. In order to compare different samples, 

the same procedure was used to fabricate multiple devices. Seventeen total devices were made, 

but only three samples showed a measureable response that was above the noise level of 

approximately 50 mV.  

All the samples that did not work showed voltage measurements with levels of noise that 

were characteristic of a short circuit. This observation suggested that the current was moving 

through the web. Many of the webs were thin and porous making it possible for the silver 

adhesive to penetrate into the web, causing the short. The fiber webs for the devices that showed 

a significant response were thicker than the other fiber webs which did not show any response. 

The smallest PVDF fiber web sample that showed a voltage response was 150 microns thick. 

Therefore, it may be necessary for thin webs to find a way to fill the pores in the web. One 
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option was to fill the pores of the fiber webs with PDMS. A PVDF fiber web filled with PDMS 

is shown in Figure 59 suggesting this may be a viable approach.  

 

 

Figure 59. PDMS filled fiber web. 
 

However, in order to be able to get an accurate comparison between devices, reducing the 

complexity of the device was important. The effect of filling the pores of the web may differ 

from sample to sample since there are extra processing steps, which included heating the 

composite. The additional heat treatment needed to cure the PDMS web matrix may influence 

the piezoelectric properties. Also, the reduction in surface area and change in electrical 

properties of the composite may influence the measured piezoelectric response. Therefore, this 
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approach was not used for comparison but is included to show that this would be a viable option 

in certain cases where fiber webs were thin.  

In order, to test the samples that showed a  piezoelectric response, a method was needed 

for applying a repeatable force. A pendulum was used to apply an impact force to the devices. 

An impact force was desired because it resulted in a high voltage response. The pendulum was 

brought to a height of 30° and released. This was done at least ten times in order to get an 

average for the voltage response. The voltage was measured with an oscilloscope.  Table 16 

shows the average piezoelectric response for each working device and includes the web structure 

of the sample. 

Table 16. Voltage response. 

PVDF Structure 

Average 

Fiber 

Diameter 

Bead Nodes Per 

12,000µm
2
 

Average Bead 

Diameter(µm) 
Porosity V/mm V/g 

Thin Film Non Poled 
   

0 0 0 

Thin Film  Poled 
   

0 10.53 0.52 

Fiber Web with 

Incomplete Evaporation 
1194 0 0 0.62 0.20 

0.02

5 

Nanofiber Web  148 81 6.2 0.88 0.28 0.12 

Nanofiber Web  147 9 11.9 0.83 1.34 0.38 

 

Table 16 shows, as expected, that the non-poled film showed no piezoelectric response. 

Also, the poled thin film device outperformed each of the fiber web devices. When compared on 

a mass basis one of the fiber webs does approach the performance of the poled thin film. When 

comparing the fiber web devices, the smaller average fiber diameter webs performed better then 

the larger average fiber diameter webs, but this may be due to the incomplete evaporation defect. 

This was in contrast to what was expected by the XRD results shown in Figure 57 and supports 

earlier statements that further work was needed to understand the exact relationship between the 

XRD data and piezoelectric performance of PVDF fiber webs. The sample with high levels of 
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beads showed worse performance than the sample with a lower number of beds. These 

observations provided evidence that, in addition to controlling the fiber diameter, there were 

additional ways to influence the piezoelectric performance of the web. Additional measurements 

were needed to confirm these observations and elaborate on the effect of each structure. 

Another reported method for measuring piezoelectric functionality of PVDF thin films 

was measuring the remnant polarization of the material [120]. This was accomplished by 

measuring the polarization hysteresis with a Sawyer–Tower circuit [25]. Hysteresis 

measurements of remnant polarization were not performed on PVDF fiber webs, but this method 

was used to evaluate the electrical properties of ferroelectric thin films [120, 121]. This method 

was attempted in the lab, but films were too porous, and there was dielectric breakdown; or films 

were too thick, and the voltage supply could not provide a sufficient electric field to perform the 

test. 

Even though PVDF thin films showed a higher piezoelectric response than fiber webs in 

this study, there are reasons why fiber webs are desired over thin film. First, production of 

piezoelectric fibers does not require the additional poling step; this saves on processing time and 

equipment. If the poling process was added it may be possible to enhance the piezoelectric 

response of fiber webs. Second, fiber webs are porous and can allow material to pass through the 

fiber membrane which may be needed for filtration applications. In addition, the porous nature of 

webs could be used to provide the support structure of another functional material. If there is a 

material that can be activated using electric charge, PVDF webs would be an ideal choice. Third, 

fiber webs were more compliant than thin films.  

This research showed that the structure of PVDF fiber webs influenced the piezoelectric 

performance. This research showed that the peaks of the XRD results do not necessarily predict 
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the piezoelectric performance in fiber webs. Future work should explore more reliable testing 

methods for piezoelectric performance. Perhaps one of the best options would be using 

piezoforce microscopy to directly measure the piezoelectric force at the atomic level [36]. This 

tool would be beneficial to future research in this field. Future work should also include a 

comparison between different contact setups for PVDF webs. Also, the influence of PDMS in the 

fiber web requires additional investigation before these samples can be tested and compared to 

the piezoelectric performance of other fiber webs.  
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Chapter 7: Discussion of Systems Approach 

The systems approach was multifaceted and, therefore, provided a comprehensive 

understanding for the production of electrospun PVDF fibers. The systems approach for 

understanding the electrospinning system was comprised of multiple subsystems, including the 

solution system, processing system, web structure, including defects, system, and the functional 

system properties.  Figure 7 shows that many relationships within the entire electrospinning 

system were still unknown and debated; also, many of the relationships reported in Figure 7 were 

for electrospinning other polymers, and it was unknown whether these relationship were the 

same for electrospinning PVDF. 

 By using the systems approach, many new relationships were established. In Figure 60 

and Figure 61, the arrows in green represent findings from this research that were not reported in 

the literature, were not observed for electrospinning PVDF, or were confirming a relationship of 

a debated parameter. The black arrows show parameters that were reported in the literature and 

verified by this research. The high number of green arrows validated the need for research based 

on a systems understanding. Since many relationships in Figure 60 and Figure 61 would not be 

observed without testing the entire system of parameters. 

 The interconnected nature of the relationships between each system emphasized the 

importance of this approach. The most successful model used to predict the average fiber 

diameter of the web used all eight parameters and all interactions. This validated the expected 

complexity of the electrospinning process and suggested that, in most cases, the system was 
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accurately described by using the eight parameters and second level interactions identified in this 

study. 

 
 

Figure 60. System diagram with solution and processing parameters with contributions of 

this     work highlighted in green. 
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Figure 61. System diagram using system parameters with contributions of this work 

highlighted in green.    
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Also, the systems understanding was necessary in order to tailor the performance of the 

web. As outlined earlier, the first step of this systems approach was to develop regression 

equations that could be used to predict the occurrence of defects for a specific set of parameters. 

Therefore, it was possible, using the production guidelines in Table 7, to provide a streamlined 

approach for manufacturers to reduce defect occurrence and anticipate the effect of changing 

electrospinning parameters. In addition, the logistic regression equations can be used to explore 

new defect free production space with a controlled web structure. Next, the regression equations 

for controlling the web structure were developed. Finally, the influence of the defect occurrence 

and web structure on the performance was explored.  

 Once structure-processing-function relationships were understood, influencing the 

desired porosity and piezoelectric response was possible. Now, when certain functionality is 

desired, the web structure can be identified. Therefore, if obtaining a fiber web with an average 

fiber diameter of 100 nm without any defects is desirable conducting a desirability study in order 

to obtain a set of parameters or multiple sets of parameters would be possible for producing the 

desired web. Once the webs were produced and characterized, then the production guidelines and 

system diagram could be used to make modifications to the structure and performance of the web 

as needed. Due to the nature of many of the applications suggested for PVDF fiber webs, 

knowing how both the porosity and the piezoelectric response of the webs changed with structure 

was important, further emphasizing the need for a systems understanding.  

Lastly, the systems understanding was useful because it provided multiple pathways for 

monitoring the occurrence of defects and the web structure using the system parameters. 

Different ranges of the Reynolds number, surface tension, and the electrospinning current were 

associated with different defects. Therefore, the values of the system parameters could be 
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monitored during production in order to anticipate defect occurrence and, in some cases, web 

structure.    
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Chapter 8: Conclusions 

In its entirety, this research demonstrated that a comprehensive systems analysis was an 

effective method for understanding the relationships between electrospinning parameters and 

web structure, which can be used to tailor the web performance. The regression equations 

showed that many parameters influenced multiple defects and web structures. Therefore, due to 

the completive nature of electrospinning parameters, a systems approach was needed to 

understand the influence of parameters on defect occurrence and the web structure. 

 Production guidelines and system diagrams presented the competition between different 

metrics due to the interrelationships of electrospinning parameters and, in some cases, system 

parameters. Now that this methodology was validated for PVDF, extending the model for 

electrospinning other polymers may be possible. The relationships developed for the guidelines 

and processing system diagrams may be applicable to other polymers. Another possibility would 

be to find new regression coefficients, specific to the desired polymer and solvent, for the 

regression equations using the parameters identified in this work as a framework. 

The high occurrence of defects at the nanoscale highlighted the challenges of 

nanomanufacturing for the electrospinning technique. Electrospraying and beading occurred as 

the fiber diameter was driven smaller into the nanoscale, while incomplete solvent evaporation 

and fiber bridging tended to occur as the fiber diameter was driven higher into the microscale. 

The molecular weight tended to have the most influence on the occurrence of different defects in 

this study. The Reynolds number, surface tension, and electrospinning current were identified as 

possible parameters to monitor during the electrospinning process in order to anticipate defects. 
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Future work could look at expanding the production space for defect free PVDF fibers using the 

regression equations developed for defect occurrence.  

Next, this research showed that regression models based on system parameters were not 

as effective as the eight parameter regression models based on more controllable electrospinning 

parameters. This was due to the high significance of parameter interactions which were not 

captured by the regression models that used system parameters. Also, this showed that the initial 

electrospinning conditions were important. Once again, in this study, the polymer molecular 

weight was identified as the most significant parameter. The Reynolds number was identified as 

the most significant system parameter when controlling the structure of fibers and beads. The 

research showed the importance of many interaction terms for defect occurrence and web 

structure that were not previously considered for electrospinning.  

In conclusion, functional webs were achieved by controlling the structure of the fiber 

webs. This study showed that, in general, incomplete evaporation reduced the porosity of fiber 

webs, and beading increased the porosity of fiber webs. Therefore, the ability to control the 

occurrence of defects also led to a new method for tailoring porosity. Also, by controlling the 

bead structure modifying the porosity. A large range of web porosities are possible by 

controlling the occurrence of defects, fiber diameter, bead diameter, and the number of beads per 

area.  In addition to measuring and controlling porosity, the piezoelectric response of fiber webs 

was documented. Only certain fiber webs were capable of producing a piezoelectric response due 

to the limitations of using a porous web. There is an opportunity for future work that explores the 

influence of defect structure on piezoelectric properties but first a standardized method to test the 

piezoelectric response of porous webs is needed. 
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 Appendix A. Statistical Analysis Results 

It should be noted that terms that were not included for some of the interactions, these 

correction terms were only important when using the equation for prediction, they do not change 

the effects and therefore were not included in the table values. These correction terms were 

shown for the equations. In addition, the intercept term for the model was also left out, except in 

cases where a regression equation was not provided, since this was only useful for the equation 

as well.  

 

Appendix A.1 Fiber Beading Statistical Analysis 

Table A1. Fiber beading statistical analysis results with solution and processing parameters 

Term Estimate Std Error Chi
2
 L-R Chi

2
 Prob>Chi

2
 Normalized Estimate 

Solution Concentration -24.1 3496 - 13 0.0002 -0.323 

Solvent Ratio 50.0 6407 - 29 <.0001 0.669 

Conductive Additive -53.4 7528 - 28 <.0001 -0.716 

Polymer Mw 74.5 8911 - 60 <.0001 1 

Voltage -15.6 2299 - 8.2 0.0042 -0.21 

Voltage · Needle 

Diameter 
-15.7 2281 - 7.7 0.0053 -0.210 

 

Table A2. Fiber beading statistical analysis results with system parameters 

Term Estimate Std Error Chi
2
 L-R Chi

2
 Prob> Chi

2
 

Surface Tension  -0.457 0.19 5.39 7.1 0.0074 

Reynolds Number  -4609 2346 3.86 20.3 <.0001 

Electric Field -0.902 0.573 2.48 2.88 0.0895 

 

Appendix A.2 Electrospraying Statistical Analysis 

Table A3. Electrospraying statistical analysis results with  solution and processing parameters 

Term Estimate 
Std 

Error 
Chi

2
 L-R Chi

2
 Prob>Chi

2
 Normalized Estimate 

Solvent Ratio 1.6 0.50 7.06 11.1 0.0009 -0.48 

Conductive Additive -4.8 1.82 8.73 7.2 0.0075 -0.69 

Pumping Ratio -6.8 2.59 5.85 7.0 0.0083 0.39 

Solution C. · Conductive A. 3.8 3.13 6.02 9.9 0.0017 0.32 

Solution C. · Polymer Mw 3.1 1.23 5.07 5.9 0.015 1 

(Polymer Mw)
2
 9.8 1.56 4.93 6.2 0.0127 0.31 

Pumping R. · Pumping R. 3 1.32 8.16 5.6 0.0177 -0.48 
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Table A4. Electrospraying statistical analysis results with system parameters 

Term Estimate Std Error Chi
2
 L-R Chi

2
 Prob>Chi

2
 

Surface Tension  16.32 4.75 11.81 14.7 0.0001 

Reynolds Number  -0.42 0.13 10.96 25.2 <.0001 

Electric Field -281.25 84.63 11.04 4.00 0.0455 

 

Appendix A.3 Complete Solvent Evaporation Statistical Analysis 

Table A5. Complete solvent evaporation statistical analysis results with  solution and processing 

parameters 

Term Estimate 
Std 

Error 
Chi

2
 L-R Chi

2
 Prob>Chi

2
 

Normalized 

Estimate 

Polymer Mw 2.73 0.90 9.2 12.44 0.0004 0.95 

Depth of Field -1.69 0.62 7.5 9.78 0.0018 -0.58 

Needle Diameter 1.50 0.58 6.58 8.59 0.0034 0.52 

Solution C. · Voltage 1.22 0.47 6.75 9.15 0.0025 0.42 

Solvent R. · Voltage -1.00 0.50 3.96 4.55 0.0329 -0.35 

Solution C. · Depth of Field -2.88 1.08 7.18 14.22 0.0002 -1.00 

Polymer Mw · Depth of Field -1.87 0.63 8.85 8.64 0.0033 -0.65 

 

Table A6. Complete solvent evaporation statistical analysis results with system parameters 

Term Estimate Std Error Chi
2
 L-R Chi

2
 Prob>Chi

2
 

Surface Tension  9.41 7.03 1.79 2.24 0.134 

Reynolds Number Formula -0.28 0.20 2.01 9.92 0.0016 

Electric Field -3067.93 1855.53 2.73 0.035 0.851 

Electrospinning Current 0.12 0.62 0.04 0.066 0.796 

  

Appendix A.4 Bridging from the Dispenser to the Collector Statistical Analysis 

Table A7. Bridging from the dispenser to the collector statistical analysis results with  solution and 

processing parameters 

Term Estimate 
Std 

Error 
Chi

2
 

L-R 

Chi
2
 

Prob>Chi
2
 Normalized Estimate 

Solution Concentration -1.41 1.01 1.96 2.1 0.148 -0.44 

Conductive Additive 2.62 0.77 11.62 24.8 <.0001 0.82 

Polymer Mw 3.21 1.02 9.96 22.4 <.0001 1.00 

Depth of Field -0.91 0.61 2.24 2.6 0.1 -0.28 

Solution C. · Polymer Mw 2.89 0.27 5.180 8.3 0.0 0.90 

Solution C. · Voltage -1.00 0.62 2.590 2.8 0.1 -0.31 
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Table A8. Bridging from the dispenser to the collector statistical analysis results with system 

parameters 

Term Estimate Std Error Chi
2
 L-R Chi

2
 Prob> Chi

2
 

Surface Tension  0.98 0.38 6.66 15.1 <.0001 

Reynolds Number Formula 167 138 1.47 1.28 0.256 

Electric Field -1.25 0.86 2.1 2.28 0.130 

Electrospinning Current* - - - - - 

 

*The electrospinning current was measured during electrospinning but was erratic and did not settle on an average 

value therefore this parameter was not included 

 

Appendix A.5 Fiber Diameter Statistical Analysis 

Table A9. Fiber diameter statistical analysis results with solution and processing parameters 

Term 
Orthogonal 

Estimate 
Std Error P-Value 

Normalized 

Estimate 

Polymer Mw 189 21.0 <.0001 0.48 

(Polymer Mw)
2
 393 41.2 <.0001 1.00 

Solvent R. 312 15.8 <.0001 0.79 

Solvent R. · Polymer Mw 293 17.0 <.0001 0.74 

Polymer Mw. · Pumping Rate 201 14.4 <.0001 0.51 

Pumping Rate 129 14.9 <.0001 0.33 

Solution C. · Polymer Mw 104 18.8 0.003 0.26 

Solvent R. · Pumping R. 149 15.5 0.005 0.38 

(Solvent R.)
2
 -190 90.3 0.0375 -0.48 

Solution Concentration wt% 99.9 31.7 0.0021 0.25 

 

Table A10. Fiber diameter statistical analysis results with system parameters 

Term Estimate Std Error P-Value 
Normalized 

Estimate 

Surface Tension · Electrospinning Current 615 344 0.0806 1 

Surface Tension · Reynolds Number 461 217 0.0393 0.749 

Electric Field 214 46.9 <.0001 0.348 

Surface Tension 108 60.2 0.0784 0.176 

Reynolds Number -238 97.7 0.019 -0.387 

Surface Tension  · Electric Field -242 92.3 0.012 -0.393 

Electrospinning Current -412 113 0.0007 -0.670 

 

Table A11. Fiber diameter statistical analysis results with all solution and processing parameters 

Term Estimate Std Error P-Value 

Intercept -952 382 0.0145 

Pumping Rate 3.3 0.90 0.0004 

Needle Diameter  -134 90 0.14 
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Table A11. (Continued) 

Solution Concentration  26.4 23 0.254 

Polymer Mw 0.00129 0.00022 <.0001 

Conductive Additive -39.6 26 0.128 

Solvent Ratio  358.3 50 <.0001 

Depth of Field  0.510 3.75 0.892 

Voltage  -3.5 6.39 0.590 

(Needle Diameter)
2
 1487.8 3.86 0.363 

Needle Diameter · Pumping Rate -1.9 0.06 0.618 

(Pumping Rate)
2
 0.0108 6.39 0.853 

Needle Diameter · Solution Concentration -75.9 100 0.450 

Pumping Rate · Solution Concentration 0.94 0.93 0.317 

(Solution Concentration)
2
 29.2 28 0.308 

Needle Diameter · Polymer Mw -0.000873 0.000546 0.113 

Pumping Rate · Polymer Mw 0.0000301 0.00000509 <.0001 

Solution Concentration · Polymer Mw 0.000187 0.000137 0.175 

(Polymer Mw)
2
 0.0000000064 0.0000000027 0.018 

Needle Diameter · Conductive Additive   10.2 69 0.883 

Pumping Rate · Conductive Additive   -1.7 0.66 0.013 

Solution Concentration · Conductive Additive   -19.0 17 0.266 

Polymer Mw · Conductive Additive   -0.000228 0.000102 0.029 

Conductive Additive
2
 24.0 19 0.205 

Needle Diameter · Solvent Ratio   -11.7 249 0.963 

Pumping Rate · Solvent Ratio   3.9 2 0.087 

Solution Concentration · Solvent Ratio   46.1 57 0.422 

Polymer Mw · Solvent Ratio   0.00202 0.000305 <.0001 

Conductive Additive · Solvent Ratio   -7.4 40 0.853 

(Solvent Ratio)
2
 -262.2 113 0.023 

Needle Diameter · Depth of Field   19.2 17 0.252 

Pumping Rate · Depth of Field   0.095 0.182 0.604 

Solution Concentration · Depth of Field   -1.8 4.1 0.664 

Polymer Mw · Depth of Field   -0.00000060 0.0000212 0.978 

Conductive Additive · Depth of Field   1.8 2.7 0.501 

Solvent Ratio · Depth of Field   -6.0 10 0.533 

(Depth of Field)
2
 0.345 1.10 0.754 

Needle Diameter · Voltage -19.5 34 0.565 

Pumping Rate · Voltage 0.13 0.355 0.726 

Solution Concentration · Voltage -3.9 9.3 0.674 

Polymer Mw · Voltage -0.000048 0.000039 0.226 

Conductive Additive  · Voltage -5.4 6.01 0.37 

Solvent Ratio  · Voltage 40.5 19 0.04 

Depth of Field  · Voltage -1.0 1.53 0.525 

(Voltage)
2
  2.8 1.84 0.129 
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Appendix A.6 Bead Diameter Statistical Analysis 

Table A12. Bead diameter statistical analysis results with solution and processing parameters 

Term 
Orthogonal 

Estimate 
Std 

Error 
P-Value 

Normalized 

Estimate 

(Polymer Mw)
2
 4.91 0.661 <.0001 1 

Solution Concentration  · Pumping Rate -1.54 0.306 <.0001 -0.314 

Voltage  · Depth of Field 0.899 0.283 0.0031 0.182 

Pumping Rate 0.830 0.274 0.0046 0.168 

Solvent Ratio · Polymer Mw  1.395 0.481 0.0065 0.283 

Voltage 0.431 0.234 0.0744 0.087 

Solvent Ratio 0.586 0.332 0.0864 0.119 

 

Table A13. Bead diameter statistical analysis results with system parameters 

Term Estimate 
Std 

Error 
P-Value 

Normalized 

Estimate 

Surface Tension -0.42 1.58 0.789 -0.032 

Reynolds Number -9.87 4.21 0.026 -0.748 

(Surface Tension)
2
 1.23 2.70 0.650 0.093 

Surface Tension · Reynolds Number 13.1 6.47 0.050 1 

(Reynolds Number)
2
 10.3 5.78 0.085 0.78 

Electric Field -0.59 1.11 0.598 -0.045 

Reynolds Number · Electric Field 1.17 4.45 0.794 0.088 

 

Appendix A.7 Number of Bead Nodes per Area Statistical Analysis 

 
Table A14. Number of bead nodes per area statistical analysis results with solution and processing 

parameters 

Term 
Orthogonal 

Estimate 
Std Error P-Value 

Normalized 

Estimate 

Polymer Mw -448 86.1 <.0001 -1 

Solvent Ratio · Polymer Mw 307 85.6 0.0006 0.686 

Voltage  · Needle D. -276 85.2 0.0019 -0.616 

Solvent Ratio · Solution Concentration 305 102 0.0039 0.680 

Solvent Ratio -211 87.2 0.0181 -0.47 

(Voltage)
2
 105 55.9 0.0637 0.235 

Solution Concentration · Polymer Mw 150 89.7 0.0991 0.334 

 

Table A15. Number of bead nodes per area statistical analysis results with system parameters 

Term Estimate Std Error P-Value 
Normalized 

Estimate 

Reynolds Number · Electrospinning Current 52031 9590 <.0001 1 

Reynolds Number 17250 2569 <.0001 0.331 
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Table A15. (Continued) 

Electrospinning Current 6068 1296 0.0001 0.116 

Surface Tension · Electric Field 1591 518 0.006 0.030 

Electric Field -2438 410 <.0001 -0.046 

Surface Tension -4382 721 <.0001 -0.084 

Surface Tension  · Reynolds Number -8215 1527 <.0001 -0.157 

Electric Field  · Electrospinning Current -8892 1940 0.0002 -0.170 

Reynolds Number  · Electric Field -9003 1496 <.0001 -0.173 

Surface Tension  · Electrospinning Current -15460 2999 <.0001 -0.297 
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Appendix B. Previously Reported Data 

Table B1. Parameters from previous studies 

Ref. 
Polymer

Mw 

Solvent Ratio 

(VAcetone/VDMF) 

Solution 

Concentration 

(wt%) 

Needle 

Diameter 

(mm) 

Pumping Rate 

(µl/min) 

Voltage 

(kV) 

Depth of 

Field 

(cm) 

TBAC 

wt% 

[122
] 

275000 0 22.5 0.6 1.66 15 15 0 

275000 0 23.99 0.6 9.63 12 12 0 

275000 0 22.5 0.6 6.44 15 10 0 

275000 0 22.5 0.6 6.44 15 15 0 

275000 0 21.01 0.6 9.63 18 18 0 

275000 0 20 0.6 6.44 15 15 0 

275000 0 22.5 0.6 6.44 20 15 0 

275000 0 23.99 0.6 3.652 18 18 0 

275000 0 22.5 0.6 6.44 15 15 0 

275000 0 22.5 0.6 6.44 15 20 0 

275000 0 21.01 0.6 3.652 12 18 0 

275000 0 23.99 0.6 9.63 12 18 0 

275000 0 22.5 0.6 6.44 10 15 0 

275000 0 22.5 0.6 6.44 15 15 0 

275000 0 25 0.6 6.44 15 15 0 

275000 0 22.5 0.6 11.62 15 15 0 

275000 0 22.5 0.6 6.44 15 15 0 

275000 0 21.01 0.6 9.63 18 12 0 

275000 0 22.5 0.6 6.44 15 15 0 

275000 0 21.01 0.6 3.652 12 12 0 

275000 0 23.99 0.6 3.652 18 12 0 

[44] 

427000 0 26 1 6 7.5 15 0 

427000 0 26 1 6 10 15 0 

427000 0 26 1 6 12.5 15 0 

427000 0 26 1 6 15 15 0 

427000 0 26 1 1 11 15 0 

427000 0 26 1 4 11 15 0 

427000 0 26 1 8 11 15 0 

427000 0 26 1 12 11 15 0 

[17] 

275000 1 20 0.413 8.3 12 20 0 

275000 1 20 0.413 8.3 15 20 0 

275000 1 20 0.413 8.3 20 20 0 

275000 1 20 0.413 8.3 25 20 0 

275000 1 20 0.413 8.3 30 20 0 
Red text indicates that the parameter was not available and an estimate was used based on the electrospinning setup in the literature or 

taken as a middle value to reduce its effect. For the solvent ratio this can also mean that DMAC was used instead of DMF. 
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